Stutzerimonas have been extensively studied due to their remarkable metabolic and physiological diversity.However,research on its phages is currently limited.In this study,we isolated a novel double-stranded DNA(dsDNA...Stutzerimonas have been extensively studied due to their remarkable metabolic and physiological diversity.However,research on its phages is currently limited.In this study,we isolated a novel double-stranded DNA(dsDNA)phage,vB_SstM-PG1,from the marine environment that infects Stutzerimonas stutzeri G1.Its dsDNA genome is 37204 bp long with a G/C content of 64.14%and encodes 54 open reading frames.The phage possesses a tail packaging structure that is different from known Stutzerimonas stutzeri phages and exhibits structural protein characteristics similar to those of temperate phages.In addition,two genes of toxin-antitoxin system,including YdaS_antitoxin and HEPN_SAV_6107,were found in the vB_SstM-PG1 genome and play important roles in regulating host growth and metabolism.With phylogenetic tree and comparative genomic analysis,it has been determined that vB_SstM-PG1 is not closely related to any phages previously identified in the GenBank database.Instead,it has a connection with enigmatic,uncultured viruses.Specifically,the vB_SstM-PG1 virus exhibits an average nucleotide identity of over 70%with six uncultivated viruses identified in the IMG/VR v4 database.This significant finding has resulted in the identification of a novel viral genus known as Metabovirus.展开更多
Multispecies forests have received increased scientific attention,driven by the hypothesis that biodiversity improves ecological resilience.However,a greater species diversity presents challenges for forest management...Multispecies forests have received increased scientific attention,driven by the hypothesis that biodiversity improves ecological resilience.However,a greater species diversity presents challenges for forest management and research.Our study aims to develop basal area growth models for tree species cohorts.The analysis is based on a dataset of 423 permanent plots(2,500 m^(2))located in temperate forests in Durango,Mexico.First,we define tree species cohorts based on individual and neighborhood-based variables using a combination of principal component and cluster analyses.Then,we estimate the basal area increment of each cohort through the generalized additive model to describe the effect of tree size,competition,stand density and site quality.The principal component and cluster analyses assign a total of 37 tree species to eight cohorts that differed primarily with regard to the distribution of tree size and vertical position within the community.The generalized additive models provide satisfactory estimates of tree growth for the species cohorts,explaining between 19 and 53 percent of the total variation of basal area increment,and highlight the following results:i)most cohorts show a"rise-and-fall"effect of tree size on tree growth;ii)surprisingly,the competition index"basal area of larger trees"had showed a positive effect in four of the eight cohorts;iii)stand density had a negative effect on basal area increment,though the effect was minor in medium-and high-density stands,and iv)basal area growth was positively correlated with site quality except for an oak cohort.The developed species cohorts and growth models provide insight into their particular ecological features and growth patterns that may support the development of sustainable management strategies for temperate multispecies forests.展开更多
Conspecific negative density dependence(CNDD)is a potentially important mechanism in maintaining species diversity.While previous evidence showed habitat heterogeneity and species’dispersal modes affect the strength ...Conspecific negative density dependence(CNDD)is a potentially important mechanism in maintaining species diversity.While previous evidence showed habitat heterogeneity and species’dispersal modes affect the strength of CNDD at early life stages of trees(e.g.,seedlings),it remains unclear how they affect the strength of CNDD at later life stages.We examined the degree of spatial aggregation between saplings and trees for species dispersed by wind and gravity in four topographic habitats within a 25-ha temperate forest dynamic plot in the Qinling Mountains of central China.We used the replicated spatial point pattern(RSPP)analysis and bivariate paircorrelation function(PCF)to detect the spatial distribution of saplings around trees at two scales,15 and 50 m,respectively.Although the signal was not apparent across the whole study region(or 25-ha),it is distinct on isolated areas with specific characteristics,suggesting that these characteristics could be important factors in CNDD.Further,we found that the gravity-dispersed tree species experienced CNDD across habitats,while for wind-dispersed species CNDD was found in gully,terrace and low-ridge habitats.Our study suggests that neglecting the habitat heterogeneity and dispersal mode can distort the signal of CNDD and community assembly in temperate forests.展开更多
DEAR EDITOR,Movement patterns can reflect species-specific characteristics of individuals and animal groups at a given scale. Accurate three-dimensional(3D) assessment can quantify the relationship between movement pa...DEAR EDITOR,Movement patterns can reflect species-specific characteristics of individuals and animal groups at a given scale. Accurate three-dimensional(3D) assessment can quantify the relationship between movement patterns of an animal and its unique habitat. Here, we evaluated the effects of habitat structure on movement patterns of the golden snub-nosed monkey(Rhinopithecus roxellana). We used airborne light detection and ranging(LiDAR) to map the 3D structure of the temperate forest in the Qinling Mountains(Shaanxi, China).展开更多
Middle-sized chambers (40cmx40cmx20 cm) and an infrared gas analyzer (IRGA) were used for the measurement of net photosynthesis of the grass layer and soil CO2 evolution, in Quercus liaotungensis Koidz. forest, which ...Middle-sized chambers (40cmx40cmx20 cm) and an infrared gas analyzer (IRGA) were used for the measurement of net photosynthesis of the grass layer and soil CO2 evolution, in Quercus liaotungensis Koidz. forest, which is a typical temperate forest ecosystem in the mountainous areas of Beijing. Changes of CO2 concentrations in both the atmosphere (2m above canopy) and the forest canopy (2m below the top of the canopy) together with those of net photosynthesis and soil CO2 evolution were also examined, in order to find the characteristics of CO2 exchange between the different components of the temperate forest ecosystem and the atmosphere. Atmospheric CO2 averaged (323+10) and (330+1) mol mol-1 respectively in summer and autumn. During the 24-hour measurements, large differences as much as -46 and -61 mol mol-1 respectively in the atmosphere and forest were found. Net photosynthesis of the grass layer in summer was (2. 59 9+ 1.05) mol CO2 m-2 S-1, two times of that in autumn, (1.31+0.39) mol CO2 s-1 In summer, there was much more CO2 evolved from soil than in autumn, averaging (5.18+0.75) mol CO2 m-2 s-1 and (1.96 + 0.57) (mol CO2 m-2 s-1, respectively. A significant correlation was found between soil CO2 evolution and ground temperature, with F =-0.864 2+0.310 1X,r=0.7164, P<0.001 (n=117). Both the minimal atmospheric CO2 level and the maximum net photosynthesis occurred around 14:00; and an increase in atmospheric CO2 and of soil CO2 evolution during night times were also found to be remarkable.展开更多
Within a forested watershed at the Uryu Experimental Forest of Hokkaido University in northern Hokkaido, overstory litterfall and related nutrient fluxes were measured at different landscape zones over two years. The ...Within a forested watershed at the Uryu Experimental Forest of Hokkaido University in northern Hokkaido, overstory litterfall and related nutrient fluxes were measured at different landscape zones over two years. The wetland zone covered with Picea glehnii pure stand. The riparian zone was deciduous broad-leaved stand dominated by Alnus hirsuta and Salix spp., while the mixture of deciduous broadleaf and evergreen conifer dominated by Betula platyphylla, Quercus crispula and Abies sachalinensis distributed on the upland zone. Annual litterfall averaged 1444, 5122, and 4123 kg.hm^-2·a^-1 in the wetland, riparian and upland zones, respectively. Litterfall production peaked in September-October, and foliage litter contributed the greatest amount (73.4%-87.6 %) of the annual total litterfall. Concentrations of nutrients analyzed in foliage litter of the dominant species showed a similar seasonal variation over the year except for N in P glehnii and A. hirsuta. The nutrient fluxes for all elements analyzed were greatest on riparian zone and lowest in wetland zone. Nutrient fluxes via litterfall followed the decreasing sequence: N (11-129 kg.hm-2.aq) 〉 Ca (9-69) 〉 K (5-20) 〉 Mg (3-15) 〉 P (0.4-4.7) for all stands. Significant differences were found in litterfall production and nutrient fluxes among the different landscape components. There existed significant differences in soil chemistry between the different landscape zones. The consistently low soil C:N ratios at the riparian zone might be due to the higher-quality litter inputs (largely N-fixing alder).展开更多
Understory plants are important components of forest ecosystems and play a crucial role in regulating community structures,function realization,and community succession.However,little is known about how abiotic and bi...Understory plants are important components of forest ecosystems and play a crucial role in regulating community structures,function realization,and community succession.However,little is known about how abiotic and biotic drivers affect the diversity of understory species in cold temperate coniferous forests in the semiarid climate region of North China.We hypothesized that(1)topographic factors are important environmental factors affecting the distribution and variation of understory strata,and(2)different understory strata respond differently to environmental factors;shrubs may be significantly affected by the overstory stratum,and herbs may be more affected by surface soil conditions.To test these hypotheses,we used the boosted regression tree method to analyze abiotic and biotic environmental factors that influence understory species diversity,using data from 280 subplots across 56 sites in cold temperate coniferous forests of North China.Elevation and slope aspect were the dominant and indirect abiotic drivers affecting understory species diversity,and individual tree size inequality(DBH variation)was the dominant biotic driver of understory species diversity;soil water content was the main edaphic factors affecting herb layers.Elevation,slope aspect,and DBH variation accounted for 36.4,14.5,and 12.1%,respectively,of shrub stratum diversity.Shrub diversity decreased with elevation within the range of altitude of this study,but increased with DBH variation;shrub diversity was highest on north-oriented slopes.The strongest factor affecting herb stratum species diversity was slope aspect,accounting for 25.9%of the diversity,followed by elevation(15.7%),slope(12.2%),and soil water content(10.3%).The highest herb diversity was found on southeast-oriented slopes and the lowest on northeast-oriented slopes;herb diversity decreased with elevation and soil water content,but increased with slope.The results of the study provide a reference for scientific management and biodiversity protection in cold temperate coniferous forests of North China.展开更多
Litter decomposition is the fundamental process in nutrient cycling and soil carbon(C) sequestration in terrestrial ecosystems. The global-wide increase in nitrogen(N) inputs is expected to alter litter decomposit...Litter decomposition is the fundamental process in nutrient cycling and soil carbon(C) sequestration in terrestrial ecosystems. The global-wide increase in nitrogen(N) inputs is expected to alter litter decomposition and,ultimately, affect ecosystem C storage and nutrient status. Temperate grassland ecosystems in China are usually N-deficient and particularly sensitive to the changes in exogenous N additions. In this paper, we conducted a 1,200-day in situ experiment in a typical semi-arid temperate steppe in Inner Mongolia to investigate the litter decomposition as well as the dynamics of litter C and N concentrations under three N addition levels(low N with 50 kg N/(hm2?a)(LN), medium N with 100 kg N/(hm2?a)(MN), and high N with 200 kg N/(hm2?a)(HN)) and three N addition forms(ammonium-N-based with 100 kg N/(hm2?a) as ammonium sulfate(AS), nitrate-N-based with 100 kg N/(hm2?a) as sodium nitrate(SN), and mixed-N-based with 100 kg N/(hm2?a) as calcium ammonium nitrate(CAN)) compared to control with no N addition(CK). The results indicated that the litter mass remaining in all N treatments exhibited a similar decomposition pattern: fast decomposition within the initial 120 days, followed by a relatively slow decomposition in the remaining observation period(120–1,200 days). The decomposition pattern in each treatment was fitted well in two split-phase models, namely, a single exponential decay model in phase I(〈398 days) and a linear decay function in phase II(≥398 days). The three N addition levels exerted insignificant effects on litter decomposition in the early stages(〈398 days, phase I; P〉0.05). However, MN and HN treatments inhibited litter mass loss after 398 and 746 days, respectively(P〈0.05). AS and SN treatments exerted similar effects on litter mass remaining during the entire decomposition period(P〉0.05). The effects of these two N addition forms differed greatly from those of CAN after 746 and 1,053 days, respectively(P〈0.05). During the decomposition period, N concentrations in the decomposing litter increased whereas C concentrations decreased, which also led to an exponential decrease in litter C:N ratios in all treatments. No significant effects were induced by N addition levels and forms on litter C and N concentrations(P〉0.05). Our results indicated that exogenous N additions could exhibit neutral or inhibitory effects on litter decomposition, and the inhibitory effects of N additions on litter decomposition in the final decay stages are not caused by the changes in the chemical qualities of the litter, such as endogenous N and C concentrations. These results will provide an important data basis for the simulation and prediction of C cycle processes in future N-deposition scenarios.展开更多
Increased nitrogen (N) deposition will often lead to a decline in species richness in grassland ecosystems but the shifts in functional groups and plant traits are still poorly understood in China. A field experimen...Increased nitrogen (N) deposition will often lead to a decline in species richness in grassland ecosystems but the shifts in functional groups and plant traits are still poorly understood in China. A field experiment was conducted at Duolun, Inner Mongolia, China, to investigate the effects of N addition on a temperate steppe ecosystem. Six N levels (0, 3, 6, 12, 24, and 48 g N/(m2-a)) were added as three applications per year from 2005 to 2010. Enhanced N deposition, even as little as 3 g N/(m2.a) above ambient N deposition (1.2 g N/(m2.a)), led to a decline in species richness of the whole community. Increasing N addition can significantly stimulate aboveground biomass of perennial bunchgrasses (PB) but decrease perennial forbs (PF), and induce a slight change in the biomass of shrubs and semi-shrubs (SS). The biomass of annuals (AS) and perennial rhizome grasses (PR) accounts for only a small part of the total biomass. Species richness of PF decreased significantly with increasing N addition rate but there was a little change in the other functional groups. PB, as the dominant functional group, has a relatively higher height than others. Differences in the response of each functional group to N addition have site-specific and species-specific characteristics. We initially infer that N enrichment stimulated the growth of PB, which further suppressed the growth of other functional groups.展开更多
Climate warming and nitrogen (N) deposition change ecosystem processes, structure, and functioning whereas the phosphorus (P) composition and availability directly influence the ecosystem structure under condi- ti...Climate warming and nitrogen (N) deposition change ecosystem processes, structure, and functioning whereas the phosphorus (P) composition and availability directly influence the ecosystem structure under condi- tions of N deposition. In our study, four treatments were designed, including a control, diurnal warming (DW), N deposition (ND), and combined warming and N deposition (WN). The effects of DW, ND, and WN on P composition were studied by 3~p nuclear magnetic resonance (3~p NMR) spectroscopy in a temperate grassland region of China. The results showed that the N deposition decreased the soil pH and total N (TN) concentration but increased the soil OIsen-P concentration. The solution-state 31p NMR analysis showed that the DW, ND and WN treatments slightly decreased the proportion of orthophosphate and increased that of the monoesters. An absence of myo-inositol phosphate in the DW, ND and WN treatments was observed compared with the control. Furthermore, the DW, ND and WN treatments significantly decreased the recovery of soil P in the NaOH-EDTA solution by 17%-20%. The principal component analysis found that the soil pH was positively correlated with the P recovery in the NaOH-EDTA solution. Therefore, the decreased soil P recovery in the DW and ND treatments might be caused by an indirect influence on the soil pH. Additionally, the soil moisture content was the key factor limiting the available P. The positive correlation of total carbon (TC) and TN with the soil P composition indicated the influence of climate warming and N deposition on the biological processes in the soil P cycling.展开更多
Although carbon(C), nitrogen(N), and phosphorous(P) stoichiometric ratios are considered good indicators of nutrient excess/limitation and thus of ecosystem health, few reports have discussed the trends and the recipr...Although carbon(C), nitrogen(N), and phosphorous(P) stoichiometric ratios are considered good indicators of nutrient excess/limitation and thus of ecosystem health, few reports have discussed the trends and the reciprocal effects of C:N:P stoichiometry in plant–litter–soil systems. The present study analyzed C:N:P ratios in four age groups of Chinese pine, Pinus tabulaeformis Carr., forests in Shanxi Province, China: plantation young forests(AY,<20 year-old); plantation middle-aged forests(AM, 21–30 year-old); natural young forests(NY,<30 year-old); and natural middle-aged forests(NM,31–50 year-old). The average C:N:P ratios calculated for tree, shrub, and herbaceous leaves, litter, and soil(0–100 cm) were generally higher in NY followed by NM,AM, and AY. C:N and C:P ratios were higher in litter than in leaves and soils, and reached higher values in the litter and leaves of young forests than in middle-aged forests;however, C:N and C:P ratios were higher in soils of middle-aged forests than in young forests. N:P ratios were higher in leaves than in litter and soils regardless of stand age; the consistent N:P<14 values found in all forests indicated N limitations. With plant leaves, C:P ratios were highest in trees, followed by herbs and shrubs, indicating a higher efficiency in tree leaf formation. C:N ratios decreased with increasing soil depth, whereas there was no trend for C:P and N:P ratios. C:N:P stoichiometry of forest foliage did not exhibit a consistent variation according to stand age. Research on the relationships between N:P, and P, N nutrient limits and the characteristics of vegetation nutrient adaptation need to be continued.展开更多
Wetlands play an important role in the global carbon cycle, but there are still considerable uncertainties in the estimation of wetland carbon storage and a dispute on whether wetlands are carbon sources or carbon sin...Wetlands play an important role in the global carbon cycle, but there are still considerable uncertainties in the estimation of wetland carbon storage and a dispute on whether wetlands are carbon sources or carbon sinks. Xiaoxing’anling are one of several concentrated distribution areas of forested wetland in China, but the carbon storage and carbon sink/source of forested wetlands in this area is unclear. We measured the ecosystem carbon storage (vegetation and soil), annual net carbon sequestration of vegetation and annual carbon emissions of soil heterotrophic respiration of five typical forested wetland types (alder swamp, white birch swamp, larch swamp, larch fen, and larch bog) distributed along a moisture gradient in this area in order to reveal the spatial variations of their carbon storage and quantitatively evaluate their position as carbon sink or source according to the net carbon balance of the ecosystems. The results show that the larch fen had high carbon storage (448.8 t ha^(−1)) (6.8% higher than the larch bog and 10.5–30.1% significantly higher than other three wetlands (P < 0.05), the white birch swamp and larch bog were medium carbon storage ecosystems (406.3 and 420.1 t ha^(−1)) (12.4–21.8% significantly higher than the other two types (P < 0.0 5), while the alder swamp and larch swamp were low in carbon storage (345.0 and 361.5 t ha^(−1), respectively). The carbon pools of the five wetlands were dominated by their soil carbon pools (88.5–94.5%), and the vegetation carbon pool was secondary (5.5–11.5%). At the same time, their ecosystem net carbon balances were positive (0.1–0.6 t ha^(−1) a^(−1)) because the annual net carbon sequestration of vegetation (4.0–4.5 t ha^(−1) a^(−1)) were higher than the annual carbon emissions of soil heterotrophic respiration (CO_(2) and CH_(4)) (3.8–4.4 t ha^(−1) a^(−1)) in four wetlands, (the alder swamp being the exception), so all four were carbon sinks while only the alder swamp was a source of carbon emissions (− 2.1 t ha^(−1) a^(−1)) due to a degraded tree layer. Our results demonstrate that these forested wetlands were generally carbon sinks in the Xiaoxing’anling, and there was obvious spatial variation in carbon storage of ecosystems along the moisture gradient.展开更多
Short-term nitrous oxide(N2O) pulse emissions caused by precipitation account for a considerable portion of the annual N2O emissions and are greatly influenced by soil nitrogen(N) dynamics. However, in Chinese sem...Short-term nitrous oxide(N2O) pulse emissions caused by precipitation account for a considerable portion of the annual N2O emissions and are greatly influenced by soil nitrogen(N) dynamics. However, in Chinese semiarid temperate steppes, the response of N2O emissions to the coupling changes of precipitation and soil N availability is not yet fully understood. In this study, we conducted two 7-day field experiments in a semiarid temperate typical steppe of Inner Mongolia, China, to investigate the N2O emission pulses resulting from artificial precipitation events(approximately equivalent to 10.0 mm rainfall) under four N addition levels(0, 5, 10 and 20 g N/(m2·a)) using the static opaque chamber technique. The results show that the simulated rainfall during the dry period in 2010 caused greater short-term emission bursts than that during the relatively rainy observation period in 2011(P〈0.05). No significant increase was observed for either the N2O peak effluxes or the weekly cumulative emissions(P〉0.05) with single water addition. The peak values of N2O efflux increased with the increasing N input. Only the treatments with water and medium(WN10) or high N addition(WN20) significantly increased the cumulative N2O emissions(P〈0.01) in both experimental periods. Under drought condition, the variations in soil N2O effluxes were positively correlated with the soil NH4-N concentrations in the three N input treatments(WN5, WN10, and WN20). Besides, the soil moisture and temperature also greatly influenced the N2O pulse emissions, particularly the N2O pulse under the relatively rainy soil condition or in the treatments without N addition(ZN and ZWN). The responses of the plant metabolism to the varying precipitation distribution and the length of drought period prior to rainfall could greatly affect the soil N dynamics and N2O emission pulses in semiarid grasslands.展开更多
Litter and root activities may alter the temperature sensitivity(Q_(10))of soil respiration.However,existing studies have not provided a comprehensive understanding of the effects of litter and root carbon inputs on t...Litter and root activities may alter the temperature sensitivity(Q_(10))of soil respiration.However,existing studies have not provided a comprehensive understanding of the effects of litter and root carbon inputs on the Q_(10)of soil respiration in different seasons.In this study,we used the trench method under in situ conditions to measure the total soil respiration(R_(total)),litter-removed soil respiration(R_(no-litter)),root-removed soil respiration(R_(no-root)),and the decomposition of soil organic matter(i.e.,both litter and root removal;R_(SOM))in different seasons of pioneer(Populus davidiana Dode)and climax(Quercus liaotungensis Mary)forests on the Loess Plateau,China.Soil temperature,soil moisture,litter biomass,fine root biomass,litter carbon,and root carbon were analyzed to obtain the drive mechanism of the Q_(10)of soil respiration in the two forests.The results showed that the Q_(10)of soil respiration exhibited seasonality,and the Q_(10)of soil respiration was higher in summer.The litter enhanced the Q_(10)of soil respiration considerably more than the root did.Soil temperature,soil moisture,fine root biomass,and litter carbon were the main factors used to predict the Q_(10)of different soil respiration components.These findings indicated that factors affecting the Q_(10)of soil respiration highly depended on soil temperature and soil moisture as well as related litter and root traits in the two forests,which can improve our understanding of soil carbon–climate feedback in global warming.The results of this study can provide reference for exploring soil respiration under temperate forest restoration.展开更多
The use of dendrochronology to study and date geomorphic processes in volcanic environments is still incipient, even more so on the volcanic slopes covered by temperate forests in central Mexico. Mass movements, such ...The use of dendrochronology to study and date geomorphic processes in volcanic environments is still incipient, even more so on the volcanic slopes covered by temperate forests in central Mexico. Mass movements, such as debris flows, often impact forest stands where they cause damage to individual trees, thereby generating growth disturbances(GD) in the tree-ring records. The identification and dating of GD enables reconstruction of the age of trees colonizing bare surfaces after major events, but also allows the assessment of the frequency or spatial distribution of past geomorphic process activity. Here we used increment cores from 65 Pinus leiophylla, Abies religiosa, and Alnus jorullensis trees growing in the Axal gorge, on the southern slopes of La Malinche volcano, to unravel past debris-flow activity both temporally and spatially. Based on the combination of GD records, a weighted tree response index(Wit), field evidence and hydrometeorological records, we reconstructed 23 debris flows since 1933.Interestingly, almost two-thirds of the reconstructed years with debris-flow activity in Axal gorge match with events recorded in Axaltzintle gorge located on the NE slopes of La Malinche. These findings suggest a regional triggering mechanism, most likely related to the occurrence of hurricanes. This research could be useful for disaster risk management of the La Malinche National Park.展开更多
Elevated atmospheric nitrogen(N) deposition has been detected in many regions of China, but its effects on soil N transformation in temperate forest ecosystems are not well known. We therefore simulated N deposition w...Elevated atmospheric nitrogen(N) deposition has been detected in many regions of China, but its effects on soil N transformation in temperate forest ecosystems are not well known. We therefore simulated N deposition with four levels of N addition rate(N0, N30, N60, and N120) for6 years in an old-growth temperate forest in Xiaoxing’an Mountains in Northeastern China. We measured gross N transformation rates in the laboratory usingN tracing technology to explore the effects of N deposition on soil gross N transformations taking advantage of N deposition soils. No significant differences in gross soil N transformation rates were observed after 6 years of N deposition with various levels of N addition rate. For all N deposition soils, the gross NH~+ immobilization rates were consistently lower than the gross N mineralization rates,leading to net N mineralization. Nitrate(NO~-) was primarily produced via oxidation of NH~+(i.e., autotrophic nitrification), whereas oxidation of organic N(i.e., heterotrophic nitrification) was negligible. Differences between the quantity of ammonia-oxidizing bacteria and ammonia-oxidizing archaea were not significant for any treatment, which likely explains the lack of a significant effect on gross nitrification rates. Gross nitrification rates were much higher than the total NO~- consumption rates,resulting in a build-up of NO~-, which highlights the high risk of N losses via NO~- leaching or gaseous N emissions from soils. This response is opposite that of typical N-limited temperate forests suffering from N deposition,suggesting that the investigated old-growth temperate forest ecosystem is likely to approach N saturation.展开更多
Seed distribution and deposition patterns around parent trees are strongly aff ected by functional traits and therefore infl uence the development of plant communities.To assess the limitations of seed dispersal and t...Seed distribution and deposition patterns around parent trees are strongly aff ected by functional traits and therefore infl uence the development of plant communities.To assess the limitations of seed dispersal and the extent to which diaspore and neighbouring parental traits explain seed rain,we used a 9-year seed data set based on 150 seed traps in a 25-ha area of a temperate forest in the Changbai Mountain.Among 480,598 seeds belonging to 12 families,17 genera,and 26 species were identifi ed,only 54%of the species with mature trees in the community were represented in seeds collected over the 9 years,indicating a limitation in seed dispersal.Understory species were most limited;overstory species were least limited.Species with wind-dispersed seed had the least limitation,while the lowest similarity in species richness was for animal-dispersed species followed by gravity-dispersed species;fl eshy-fruited species had stronger dispersal limitations than dry-fruited species.Generalized linear mixed models showed that relative basal area had a signifi cant positive eff ect on seed abundance in traps,while the contribution of diaspore traits was low for nearly all groups.These results suggest that tree traits had the strongest contribution to seed dispersal and deposition for all functional groups examined here.These fi ndings strengthen the knowledge that tree traits are key in explaining seed deposition patterns,at least at the primary dispersal stage.This improved knowledge of sources of seeds that are dispersed could facilitate greater understanding of seedling and community dynamics in temperate forests.展开更多
East Asia has long been recognized as a major center for temperate woody plants diversity.Although several theories have been proposed to explain how the diversity of these temperate elements accumulated in the region...East Asia has long been recognized as a major center for temperate woody plants diversity.Although several theories have been proposed to explain how the diversity of these temperate elements accumulated in the region,the specific process remains unclear.Here we describe six species of Carpinus,a typical northern hemisphere temperate woody plant,from the early Miocene of the Maguan Basin,southwestern China,southern East Asia.This constitutes the southernmost,and the earliest occurrence that shows a high species diversity of the genus.Together with other Carpinus fossil records from East Asia,we show that the genus had achieved a high diversity in East Asia at least by the middle Miocene.Of the six species here described,three have become extinct,indicating that the genus has experienced apparent species loss during its evolutionary history in East Asia.In contrast,the remaining three species closely resemble extant species,raising the possibility that these species may have persisted in East Asia at least since the early Miocene.These findings indicate that the accumulation of species diversity of Carpinus in East Asia is a complex process involving extinction,persistence,and possible subsequent speciation.展开更多
Background: The demographic trade-offs(i.e. growth and survival) play important roles in forest dynamics and they are driven by multiple factors, including species’ inherent life-history strategies(such as shade-tole...Background: The demographic trade-offs(i.e. growth and survival) play important roles in forest dynamics and they are driven by multiple factors, including species’ inherent life-history strategies(such as shade-tolerance and mycorrhizal type), neighborhood interactions(such as conspecific negative density dependence, CNDD), and abiotic environment pressures. Although studies found that CNDD occurred in tropical and temperate forest,attempts to identify how the variations in CNDD control their impacts on growth and survival remain debate. In the present study, we conducted an extensive field survey, and analyzed demographic rates from 24 co-occurring temperate tree species, in order to test the importance of CNDD in shaping the growth-survival trade-offs.Results: Our study found that density dependence and environmental filtering were strong predictors for individual growth-survival trade-offs, while they showed variations across shade-intolerant and ectomycorrhizal species, as well as saplings and juveniles with more negative CNDD. Species growth showed positive relationship with mortality. And our results also support the fact that CNDD drives species growth-survival trade-offs at the community level with environmental stress.Conclusions: Our study indicates that biotic interactions such as density dependence and environment filtering played an important role in growth-survival trade-offs, and confirmed that the Janzen-Connell hypothesis in temperate forest was associated with species life-history strategies. In addition, shade-tolerance, mycorrhizal type and life-stage of forest species responded differently to CNDD, thus providing insights regarding different community assembly mechanisms and their interactions. Therefore, it is important to take species survival with growth and species life-history strategies into account when focusing on forest dynamics.展开更多
Information on the genetic relationship between tropical maize (Zea mays L), germplasm and temperate maize germplasm is of great value to maize breeding. The objective of this study was to determine the combining abil...Information on the genetic relationship between tropical maize (Zea mays L), germplasm and temperate maize germplasm is of great value to maize breeding. The objective of this study was to determine the combining ability and genetic relationship of 25 inbreds extracted from five tropical maize populations and a land race, with four temperate maize inbreds (Huangzaosi, Mol7, B73 and Dan 340). The 25 tropical inbreds were crossed with the four temperate inbreds and evaluated. Lines from Suwanl and POP28 had high general combining ability (GCA) for grain yield. The lines from POP32 (ETO) had the highest special combining ability (SCA) with B73; the average SCA value of the 5 lines was 879 kg/ha. The lines from Suwanl had the second-highest SCA (584 kg/ha) with Huangzaosi. The lines from Suwanl had the greatest relative heterosis (20%) with B73, followed by the lines from POP32 (ETO) with B73 (19%). Five heterotic patterns have been identified from this study: Suwanl × Reid, ETO × Reid, POP28× Reid, POP28× Ludahong-gu, and Suwan1× Lancaster.展开更多
基金supported by the National Natural Science Foundation of China (Nos.42188102,42120104006,41976117,42176111 and 42306111)the Fundamental Research Funds for the Central Universities (No.201812002 and Andrew McMinn)。
文摘Stutzerimonas have been extensively studied due to their remarkable metabolic and physiological diversity.However,research on its phages is currently limited.In this study,we isolated a novel double-stranded DNA(dsDNA)phage,vB_SstM-PG1,from the marine environment that infects Stutzerimonas stutzeri G1.Its dsDNA genome is 37204 bp long with a G/C content of 64.14%and encodes 54 open reading frames.The phage possesses a tail packaging structure that is different from known Stutzerimonas stutzeri phages and exhibits structural protein characteristics similar to those of temperate phages.In addition,two genes of toxin-antitoxin system,including YdaS_antitoxin and HEPN_SAV_6107,were found in the vB_SstM-PG1 genome and play important roles in regulating host growth and metabolism.With phylogenetic tree and comparative genomic analysis,it has been determined that vB_SstM-PG1 is not closely related to any phages previously identified in the GenBank database.Instead,it has a connection with enigmatic,uncultured viruses.Specifically,the vB_SstM-PG1 virus exhibits an average nucleotide identity of over 70%with six uncultivated viruses identified in the IMG/VR v4 database.This significant finding has resulted in the identification of a novel viral genus known as Metabovirus.
基金The National Forestry Commission of Mexico and The Mexican National Council for Science and Technology(CONAFOR-CONACYT-115900)。
文摘Multispecies forests have received increased scientific attention,driven by the hypothesis that biodiversity improves ecological resilience.However,a greater species diversity presents challenges for forest management and research.Our study aims to develop basal area growth models for tree species cohorts.The analysis is based on a dataset of 423 permanent plots(2,500 m^(2))located in temperate forests in Durango,Mexico.First,we define tree species cohorts based on individual and neighborhood-based variables using a combination of principal component and cluster analyses.Then,we estimate the basal area increment of each cohort through the generalized additive model to describe the effect of tree size,competition,stand density and site quality.The principal component and cluster analyses assign a total of 37 tree species to eight cohorts that differed primarily with regard to the distribution of tree size and vertical position within the community.The generalized additive models provide satisfactory estimates of tree growth for the species cohorts,explaining between 19 and 53 percent of the total variation of basal area increment,and highlight the following results:i)most cohorts show a"rise-and-fall"effect of tree size on tree growth;ii)surprisingly,the competition index"basal area of larger trees"had showed a positive effect in four of the eight cohorts;iii)stand density had a negative effect on basal area increment,though the effect was minor in medium-and high-density stands,and iv)basal area growth was positively correlated with site quality except for an oak cohort.The developed species cohorts and growth models provide insight into their particular ecological features and growth patterns that may support the development of sustainable management strategies for temperate multispecies forests.
基金Shihong Jia was financially supported by the National Natural Science Foundation of China(Grant No.32001120)the Fundamental Research Funds for the Central Universities(Grant No.31020200QD026)+1 种基金Qiulong Yin was supported by the National Natural Science Foundation of China(Grant No.32001171)Ying Luo was supported by the Innovation Capability Support Program of Shaanxi(Grant No.2022KRM090).
文摘Conspecific negative density dependence(CNDD)is a potentially important mechanism in maintaining species diversity.While previous evidence showed habitat heterogeneity and species’dispersal modes affect the strength of CNDD at early life stages of trees(e.g.,seedlings),it remains unclear how they affect the strength of CNDD at later life stages.We examined the degree of spatial aggregation between saplings and trees for species dispersed by wind and gravity in four topographic habitats within a 25-ha temperate forest dynamic plot in the Qinling Mountains of central China.We used the replicated spatial point pattern(RSPP)analysis and bivariate paircorrelation function(PCF)to detect the spatial distribution of saplings around trees at two scales,15 and 50 m,respectively.Although the signal was not apparent across the whole study region(or 25-ha),it is distinct on isolated areas with specific characteristics,suggesting that these characteristics could be important factors in CNDD.Further,we found that the gravity-dispersed tree species experienced CNDD across habitats,while for wind-dispersed species CNDD was found in gully,terrace and low-ridge habitats.Our study suggests that neglecting the habitat heterogeneity and dispersal mode can distort the signal of CNDD and community assembly in temperate forests.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB31020302)National Natural Science Foundation of China (32170507, 31730104,31870396, and 32070450)。
文摘DEAR EDITOR,Movement patterns can reflect species-specific characteristics of individuals and animal groups at a given scale. Accurate three-dimensional(3D) assessment can quantify the relationship between movement patterns of an animal and its unique habitat. Here, we evaluated the effects of habitat structure on movement patterns of the golden snub-nosed monkey(Rhinopithecus roxellana). We used airborne light detection and ranging(LiDAR) to map the 3D structure of the temperate forest in the Qinling Mountains(Shaanxi, China).
基金This is a key project of National Natural Science Foundation of China.
文摘Middle-sized chambers (40cmx40cmx20 cm) and an infrared gas analyzer (IRGA) were used for the measurement of net photosynthesis of the grass layer and soil CO2 evolution, in Quercus liaotungensis Koidz. forest, which is a typical temperate forest ecosystem in the mountainous areas of Beijing. Changes of CO2 concentrations in both the atmosphere (2m above canopy) and the forest canopy (2m below the top of the canopy) together with those of net photosynthesis and soil CO2 evolution were also examined, in order to find the characteristics of CO2 exchange between the different components of the temperate forest ecosystem and the atmosphere. Atmospheric CO2 averaged (323+10) and (330+1) mol mol-1 respectively in summer and autumn. During the 24-hour measurements, large differences as much as -46 and -61 mol mol-1 respectively in the atmosphere and forest were found. Net photosynthesis of the grass layer in summer was (2. 59 9+ 1.05) mol CO2 m-2 S-1, two times of that in autumn, (1.31+0.39) mol CO2 s-1 In summer, there was much more CO2 evolved from soil than in autumn, averaging (5.18+0.75) mol CO2 m-2 s-1 and (1.96 + 0.57) (mol CO2 m-2 s-1, respectively. A significant correlation was found between soil CO2 evolution and ground temperature, with F =-0.864 2+0.310 1X,r=0.7164, P<0.001 (n=117). Both the minimal atmospheric CO2 level and the maximum net photosynthesis occurred around 14:00; and an increase in atmospheric CO2 and of soil CO2 evolution during night times were also found to be remarkable.
基金The project was supported by Japanese Society for Promotion of Sciences (15P03118).
文摘Within a forested watershed at the Uryu Experimental Forest of Hokkaido University in northern Hokkaido, overstory litterfall and related nutrient fluxes were measured at different landscape zones over two years. The wetland zone covered with Picea glehnii pure stand. The riparian zone was deciduous broad-leaved stand dominated by Alnus hirsuta and Salix spp., while the mixture of deciduous broadleaf and evergreen conifer dominated by Betula platyphylla, Quercus crispula and Abies sachalinensis distributed on the upland zone. Annual litterfall averaged 1444, 5122, and 4123 kg.hm^-2·a^-1 in the wetland, riparian and upland zones, respectively. Litterfall production peaked in September-October, and foliage litter contributed the greatest amount (73.4%-87.6 %) of the annual total litterfall. Concentrations of nutrients analyzed in foliage litter of the dominant species showed a similar seasonal variation over the year except for N in P glehnii and A. hirsuta. The nutrient fluxes for all elements analyzed were greatest on riparian zone and lowest in wetland zone. Nutrient fluxes via litterfall followed the decreasing sequence: N (11-129 kg.hm-2.aq) 〉 Ca (9-69) 〉 K (5-20) 〉 Mg (3-15) 〉 P (0.4-4.7) for all stands. Significant differences were found in litterfall production and nutrient fluxes among the different landscape components. There existed significant differences in soil chemistry between the different landscape zones. The consistently low soil C:N ratios at the riparian zone might be due to the higher-quality litter inputs (largely N-fixing alder).
基金supported by the National Natural Science Foundation of China(Grant No.31470630)Shanxi Forestry Science and Technology Innovation Project
文摘Understory plants are important components of forest ecosystems and play a crucial role in regulating community structures,function realization,and community succession.However,little is known about how abiotic and biotic drivers affect the diversity of understory species in cold temperate coniferous forests in the semiarid climate region of North China.We hypothesized that(1)topographic factors are important environmental factors affecting the distribution and variation of understory strata,and(2)different understory strata respond differently to environmental factors;shrubs may be significantly affected by the overstory stratum,and herbs may be more affected by surface soil conditions.To test these hypotheses,we used the boosted regression tree method to analyze abiotic and biotic environmental factors that influence understory species diversity,using data from 280 subplots across 56 sites in cold temperate coniferous forests of North China.Elevation and slope aspect were the dominant and indirect abiotic drivers affecting understory species diversity,and individual tree size inequality(DBH variation)was the dominant biotic driver of understory species diversity;soil water content was the main edaphic factors affecting herb layers.Elevation,slope aspect,and DBH variation accounted for 36.4,14.5,and 12.1%,respectively,of shrub stratum diversity.Shrub diversity decreased with elevation within the range of altitude of this study,but increased with DBH variation;shrub diversity was highest on north-oriented slopes.The strongest factor affecting herb stratum species diversity was slope aspect,accounting for 25.9%of the diversity,followed by elevation(15.7%),slope(12.2%),and soil water content(10.3%).The highest herb diversity was found on southeast-oriented slopes and the lowest on northeast-oriented slopes;herb diversity decreased with elevation and soil water content,but increased with slope.The results of the study provide a reference for scientific management and biodiversity protection in cold temperate coniferous forests of North China.
基金funded by the National Natural Science Foundation of China (41073061, 41203054, 40730105, 40973057)the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-EW-302)
文摘Litter decomposition is the fundamental process in nutrient cycling and soil carbon(C) sequestration in terrestrial ecosystems. The global-wide increase in nitrogen(N) inputs is expected to alter litter decomposition and,ultimately, affect ecosystem C storage and nutrient status. Temperate grassland ecosystems in China are usually N-deficient and particularly sensitive to the changes in exogenous N additions. In this paper, we conducted a 1,200-day in situ experiment in a typical semi-arid temperate steppe in Inner Mongolia to investigate the litter decomposition as well as the dynamics of litter C and N concentrations under three N addition levels(low N with 50 kg N/(hm2?a)(LN), medium N with 100 kg N/(hm2?a)(MN), and high N with 200 kg N/(hm2?a)(HN)) and three N addition forms(ammonium-N-based with 100 kg N/(hm2?a) as ammonium sulfate(AS), nitrate-N-based with 100 kg N/(hm2?a) as sodium nitrate(SN), and mixed-N-based with 100 kg N/(hm2?a) as calcium ammonium nitrate(CAN)) compared to control with no N addition(CK). The results indicated that the litter mass remaining in all N treatments exhibited a similar decomposition pattern: fast decomposition within the initial 120 days, followed by a relatively slow decomposition in the remaining observation period(120–1,200 days). The decomposition pattern in each treatment was fitted well in two split-phase models, namely, a single exponential decay model in phase I(〈398 days) and a linear decay function in phase II(≥398 days). The three N addition levels exerted insignificant effects on litter decomposition in the early stages(〈398 days, phase I; P〉0.05). However, MN and HN treatments inhibited litter mass loss after 398 and 746 days, respectively(P〈0.05). AS and SN treatments exerted similar effects on litter mass remaining during the entire decomposition period(P〉0.05). The effects of these two N addition forms differed greatly from those of CAN after 746 and 1,053 days, respectively(P〈0.05). During the decomposition period, N concentrations in the decomposing litter increased whereas C concentrations decreased, which also led to an exponential decrease in litter C:N ratios in all treatments. No significant effects were induced by N addition levels and forms on litter C and N concentrations(P〉0.05). Our results indicated that exogenous N additions could exhibit neutral or inhibitory effects on litter decomposition, and the inhibitory effects of N additions on litter decomposition in the final decay stages are not caused by the changes in the chemical qualities of the litter, such as endogenous N and C concentrations. These results will provide an important data basis for the simulation and prediction of C cycle processes in future N-deposition scenarios.
基金supported by the One Hundred Person Project of Chinese Academy of Sciencesthe National Natural Science Foundation of China (40771188,41071151)+1 种基金the Innovative Group Grants from NSFC (30821003)the Sino-German project (DFG Research Training Group,GK1070)
文摘Increased nitrogen (N) deposition will often lead to a decline in species richness in grassland ecosystems but the shifts in functional groups and plant traits are still poorly understood in China. A field experiment was conducted at Duolun, Inner Mongolia, China, to investigate the effects of N addition on a temperate steppe ecosystem. Six N levels (0, 3, 6, 12, 24, and 48 g N/(m2-a)) were added as three applications per year from 2005 to 2010. Enhanced N deposition, even as little as 3 g N/(m2.a) above ambient N deposition (1.2 g N/(m2.a)), led to a decline in species richness of the whole community. Increasing N addition can significantly stimulate aboveground biomass of perennial bunchgrasses (PB) but decrease perennial forbs (PF), and induce a slight change in the biomass of shrubs and semi-shrubs (SS). The biomass of annuals (AS) and perennial rhizome grasses (PR) accounts for only a small part of the total biomass. Species richness of PF decreased significantly with increasing N addition rate but there was a little change in the other functional groups. PB, as the dominant functional group, has a relatively higher height than others. Differences in the response of each functional group to N addition have site-specific and species-specific characteristics. We initially infer that N enrichment stimulated the growth of PB, which further suppressed the growth of other functional groups.
基金National Natural Science Foundation of China(41171241)the National Basic Research Program of China(2011CB403204)
文摘Climate warming and nitrogen (N) deposition change ecosystem processes, structure, and functioning whereas the phosphorus (P) composition and availability directly influence the ecosystem structure under condi- tions of N deposition. In our study, four treatments were designed, including a control, diurnal warming (DW), N deposition (ND), and combined warming and N deposition (WN). The effects of DW, ND, and WN on P composition were studied by 3~p nuclear magnetic resonance (3~p NMR) spectroscopy in a temperate grassland region of China. The results showed that the N deposition decreased the soil pH and total N (TN) concentration but increased the soil OIsen-P concentration. The solution-state 31p NMR analysis showed that the DW, ND and WN treatments slightly decreased the proportion of orthophosphate and increased that of the monoesters. An absence of myo-inositol phosphate in the DW, ND and WN treatments was observed compared with the control. Furthermore, the DW, ND and WN treatments significantly decreased the recovery of soil P in the NaOH-EDTA solution by 17%-20%. The principal component analysis found that the soil pH was positively correlated with the P recovery in the NaOH-EDTA solution. Therefore, the decreased soil P recovery in the DW and ND treatments might be caused by an indirect influence on the soil pH. Additionally, the soil moisture content was the key factor limiting the available P. The positive correlation of total carbon (TC) and TN with the soil P composition indicated the influence of climate warming and N deposition on the biological processes in the soil P cycling.
基金supported by the ‘‘Doctoral Scientific Research Foundation’’ of Heilongjiang Bayi Agricultural University,Grant No.XDB2015-02 and the ‘‘Strategic Priority Research Program’’ of the Chinese Academy of Sciences,Grant No.XDA05050203-04-01
文摘Although carbon(C), nitrogen(N), and phosphorous(P) stoichiometric ratios are considered good indicators of nutrient excess/limitation and thus of ecosystem health, few reports have discussed the trends and the reciprocal effects of C:N:P stoichiometry in plant–litter–soil systems. The present study analyzed C:N:P ratios in four age groups of Chinese pine, Pinus tabulaeformis Carr., forests in Shanxi Province, China: plantation young forests(AY,<20 year-old); plantation middle-aged forests(AM, 21–30 year-old); natural young forests(NY,<30 year-old); and natural middle-aged forests(NM,31–50 year-old). The average C:N:P ratios calculated for tree, shrub, and herbaceous leaves, litter, and soil(0–100 cm) were generally higher in NY followed by NM,AM, and AY. C:N and C:P ratios were higher in litter than in leaves and soils, and reached higher values in the litter and leaves of young forests than in middle-aged forests;however, C:N and C:P ratios were higher in soils of middle-aged forests than in young forests. N:P ratios were higher in leaves than in litter and soils regardless of stand age; the consistent N:P<14 values found in all forests indicated N limitations. With plant leaves, C:P ratios were highest in trees, followed by herbs and shrubs, indicating a higher efficiency in tree leaf formation. C:N ratios decreased with increasing soil depth, whereas there was no trend for C:P and N:P ratios. C:N:P stoichiometry of forest foliage did not exhibit a consistent variation according to stand age. Research on the relationships between N:P, and P, N nutrient limits and the characteristics of vegetation nutrient adaptation need to be continued.
基金This project was supported fi nancially by the National Key Research and Development Program of China(2016YFA0600803)the National Natural Science Foundation of China(31370461).
文摘Wetlands play an important role in the global carbon cycle, but there are still considerable uncertainties in the estimation of wetland carbon storage and a dispute on whether wetlands are carbon sources or carbon sinks. Xiaoxing’anling are one of several concentrated distribution areas of forested wetland in China, but the carbon storage and carbon sink/source of forested wetlands in this area is unclear. We measured the ecosystem carbon storage (vegetation and soil), annual net carbon sequestration of vegetation and annual carbon emissions of soil heterotrophic respiration of five typical forested wetland types (alder swamp, white birch swamp, larch swamp, larch fen, and larch bog) distributed along a moisture gradient in this area in order to reveal the spatial variations of their carbon storage and quantitatively evaluate their position as carbon sink or source according to the net carbon balance of the ecosystems. The results show that the larch fen had high carbon storage (448.8 t ha^(−1)) (6.8% higher than the larch bog and 10.5–30.1% significantly higher than other three wetlands (P < 0.05), the white birch swamp and larch bog were medium carbon storage ecosystems (406.3 and 420.1 t ha^(−1)) (12.4–21.8% significantly higher than the other two types (P < 0.0 5), while the alder swamp and larch swamp were low in carbon storage (345.0 and 361.5 t ha^(−1), respectively). The carbon pools of the five wetlands were dominated by their soil carbon pools (88.5–94.5%), and the vegetation carbon pool was secondary (5.5–11.5%). At the same time, their ecosystem net carbon balances were positive (0.1–0.6 t ha^(−1) a^(−1)) because the annual net carbon sequestration of vegetation (4.0–4.5 t ha^(−1) a^(−1)) were higher than the annual carbon emissions of soil heterotrophic respiration (CO_(2) and CH_(4)) (3.8–4.4 t ha^(−1) a^(−1)) in four wetlands, (the alder swamp being the exception), so all four were carbon sinks while only the alder swamp was a source of carbon emissions (− 2.1 t ha^(−1) a^(−1)) due to a degraded tree layer. Our results demonstrate that these forested wetlands were generally carbon sinks in the Xiaoxing’anling, and there was obvious spatial variation in carbon storage of ecosystems along the moisture gradient.
基金founded by the Knowledge Innovation Program of Chinese Academy of Sciences (KZCX2-EW-302)the National Natural Science Foundation of China (41073061, 41330528, 41203054)
文摘Short-term nitrous oxide(N2O) pulse emissions caused by precipitation account for a considerable portion of the annual N2O emissions and are greatly influenced by soil nitrogen(N) dynamics. However, in Chinese semiarid temperate steppes, the response of N2O emissions to the coupling changes of precipitation and soil N availability is not yet fully understood. In this study, we conducted two 7-day field experiments in a semiarid temperate typical steppe of Inner Mongolia, China, to investigate the N2O emission pulses resulting from artificial precipitation events(approximately equivalent to 10.0 mm rainfall) under four N addition levels(0, 5, 10 and 20 g N/(m2·a)) using the static opaque chamber technique. The results show that the simulated rainfall during the dry period in 2010 caused greater short-term emission bursts than that during the relatively rainy observation period in 2011(P〈0.05). No significant increase was observed for either the N2O peak effluxes or the weekly cumulative emissions(P〉0.05) with single water addition. The peak values of N2O efflux increased with the increasing N input. Only the treatments with water and medium(WN10) or high N addition(WN20) significantly increased the cumulative N2O emissions(P〈0.01) in both experimental periods. Under drought condition, the variations in soil N2O effluxes were positively correlated with the soil NH4-N concentrations in the three N input treatments(WN5, WN10, and WN20). Besides, the soil moisture and temperature also greatly influenced the N2O pulse emissions, particularly the N2O pulse under the relatively rainy soil condition or in the treatments without N addition(ZN and ZWN). The responses of the plant metabolism to the varying precipitation distribution and the length of drought period prior to rainfall could greatly affect the soil N dynamics and N2O emission pulses in semiarid grasslands.
基金sponsored by the National Natural Science Foundation of China(41877538,41671511)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB40000000,XDA23070201)the Funding of Special Support Plan of Young Talents Project of China and National Forestry and Grassland Administration in China(20201326015)。
文摘Litter and root activities may alter the temperature sensitivity(Q_(10))of soil respiration.However,existing studies have not provided a comprehensive understanding of the effects of litter and root carbon inputs on the Q_(10)of soil respiration in different seasons.In this study,we used the trench method under in situ conditions to measure the total soil respiration(R_(total)),litter-removed soil respiration(R_(no-litter)),root-removed soil respiration(R_(no-root)),and the decomposition of soil organic matter(i.e.,both litter and root removal;R_(SOM))in different seasons of pioneer(Populus davidiana Dode)and climax(Quercus liaotungensis Mary)forests on the Loess Plateau,China.Soil temperature,soil moisture,litter biomass,fine root biomass,litter carbon,and root carbon were analyzed to obtain the drive mechanism of the Q_(10)of soil respiration in the two forests.The results showed that the Q_(10)of soil respiration exhibited seasonality,and the Q_(10)of soil respiration was higher in summer.The litter enhanced the Q_(10)of soil respiration considerably more than the root did.Soil temperature,soil moisture,fine root biomass,and litter carbon were the main factors used to predict the Q_(10)of different soil respiration components.These findings indicated that factors affecting the Q_(10)of soil respiration highly depended on soil temperature and soil moisture as well as related litter and root traits in the two forests,which can improve our understanding of soil carbon–climate feedback in global warming.The results of this study can provide reference for exploring soil respiration under temperate forest restoration.
文摘The use of dendrochronology to study and date geomorphic processes in volcanic environments is still incipient, even more so on the volcanic slopes covered by temperate forests in central Mexico. Mass movements, such as debris flows, often impact forest stands where they cause damage to individual trees, thereby generating growth disturbances(GD) in the tree-ring records. The identification and dating of GD enables reconstruction of the age of trees colonizing bare surfaces after major events, but also allows the assessment of the frequency or spatial distribution of past geomorphic process activity. Here we used increment cores from 65 Pinus leiophylla, Abies religiosa, and Alnus jorullensis trees growing in the Axal gorge, on the southern slopes of La Malinche volcano, to unravel past debris-flow activity both temporally and spatially. Based on the combination of GD records, a weighted tree response index(Wit), field evidence and hydrometeorological records, we reconstructed 23 debris flows since 1933.Interestingly, almost two-thirds of the reconstructed years with debris-flow activity in Axal gorge match with events recorded in Axaltzintle gorge located on the NE slopes of La Malinche. These findings suggest a regional triggering mechanism, most likely related to the occurrence of hurricanes. This research could be useful for disaster risk management of the La Malinche National Park.
基金supported by Grants from the ‘‘973’’ Project(2014CB953803)the Fundamental Research Funds for the Central Universities(2572017EA02)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD,164320H116)
文摘Elevated atmospheric nitrogen(N) deposition has been detected in many regions of China, but its effects on soil N transformation in temperate forest ecosystems are not well known. We therefore simulated N deposition with four levels of N addition rate(N0, N30, N60, and N120) for6 years in an old-growth temperate forest in Xiaoxing’an Mountains in Northeastern China. We measured gross N transformation rates in the laboratory usingN tracing technology to explore the effects of N deposition on soil gross N transformations taking advantage of N deposition soils. No significant differences in gross soil N transformation rates were observed after 6 years of N deposition with various levels of N addition rate. For all N deposition soils, the gross NH~+ immobilization rates were consistently lower than the gross N mineralization rates,leading to net N mineralization. Nitrate(NO~-) was primarily produced via oxidation of NH~+(i.e., autotrophic nitrification), whereas oxidation of organic N(i.e., heterotrophic nitrification) was negligible. Differences between the quantity of ammonia-oxidizing bacteria and ammonia-oxidizing archaea were not significant for any treatment, which likely explains the lack of a significant effect on gross nitrification rates. Gross nitrification rates were much higher than the total NO~- consumption rates,resulting in a build-up of NO~-, which highlights the high risk of N losses via NO~- leaching or gaseous N emissions from soils. This response is opposite that of typical N-limited temperate forests suffering from N deposition,suggesting that the investigated old-growth temperate forest ecosystem is likely to approach N saturation.
基金We gratefully thank Baizhang Song and Xichang He for collecting the seed rain data.This study was funded by the National Key Research and Development Program of China(2016YFC0500300)National Natural Science Foundation of China(31570432,31670632,41671050)by NSF Grant DEB-1745496 awarded to JML.
文摘Seed distribution and deposition patterns around parent trees are strongly aff ected by functional traits and therefore infl uence the development of plant communities.To assess the limitations of seed dispersal and the extent to which diaspore and neighbouring parental traits explain seed rain,we used a 9-year seed data set based on 150 seed traps in a 25-ha area of a temperate forest in the Changbai Mountain.Among 480,598 seeds belonging to 12 families,17 genera,and 26 species were identifi ed,only 54%of the species with mature trees in the community were represented in seeds collected over the 9 years,indicating a limitation in seed dispersal.Understory species were most limited;overstory species were least limited.Species with wind-dispersed seed had the least limitation,while the lowest similarity in species richness was for animal-dispersed species followed by gravity-dispersed species;fl eshy-fruited species had stronger dispersal limitations than dry-fruited species.Generalized linear mixed models showed that relative basal area had a signifi cant positive eff ect on seed abundance in traps,while the contribution of diaspore traits was low for nearly all groups.These results suggest that tree traits had the strongest contribution to seed dispersal and deposition for all functional groups examined here.These fi ndings strengthen the knowledge that tree traits are key in explaining seed deposition patterns,at least at the primary dispersal stage.This improved knowledge of sources of seeds that are dispersed could facilitate greater understanding of seedling and community dynamics in temperate forests.
基金the National Natural Science Foundation of China(No.31670216,No.31900194)the Foundation of the State Key Laboratory of Palaeobiology and Stratigraphy,Nanjing Institute of Geology and Palaeontology,Chinese Academy of Sciences(No.183112)。
文摘East Asia has long been recognized as a major center for temperate woody plants diversity.Although several theories have been proposed to explain how the diversity of these temperate elements accumulated in the region,the specific process remains unclear.Here we describe six species of Carpinus,a typical northern hemisphere temperate woody plant,from the early Miocene of the Maguan Basin,southwestern China,southern East Asia.This constitutes the southernmost,and the earliest occurrence that shows a high species diversity of the genus.Together with other Carpinus fossil records from East Asia,we show that the genus had achieved a high diversity in East Asia at least by the middle Miocene.Of the six species here described,three have become extinct,indicating that the genus has experienced apparent species loss during its evolutionary history in East Asia.In contrast,the remaining three species closely resemble extant species,raising the possibility that these species may have persisted in East Asia at least since the early Miocene.These findings indicate that the accumulation of species diversity of Carpinus in East Asia is a complex process involving extinction,persistence,and possible subsequent speciation.
基金supported by the Program of National Natural Science Foundation of China(No.31971650)the Key Project of National Key Research and Development Plan(No.2017YFC0504104)Beijing Forestry University Outstanding Young Talent Cultivation Project(No.2019JQ03001).
文摘Background: The demographic trade-offs(i.e. growth and survival) play important roles in forest dynamics and they are driven by multiple factors, including species’ inherent life-history strategies(such as shade-tolerance and mycorrhizal type), neighborhood interactions(such as conspecific negative density dependence, CNDD), and abiotic environment pressures. Although studies found that CNDD occurred in tropical and temperate forest,attempts to identify how the variations in CNDD control their impacts on growth and survival remain debate. In the present study, we conducted an extensive field survey, and analyzed demographic rates from 24 co-occurring temperate tree species, in order to test the importance of CNDD in shaping the growth-survival trade-offs.Results: Our study found that density dependence and environmental filtering were strong predictors for individual growth-survival trade-offs, while they showed variations across shade-intolerant and ectomycorrhizal species, as well as saplings and juveniles with more negative CNDD. Species growth showed positive relationship with mortality. And our results also support the fact that CNDD drives species growth-survival trade-offs at the community level with environmental stress.Conclusions: Our study indicates that biotic interactions such as density dependence and environment filtering played an important role in growth-survival trade-offs, and confirmed that the Janzen-Connell hypothesis in temperate forest was associated with species life-history strategies. In addition, shade-tolerance, mycorrhizal type and life-stage of forest species responded differently to CNDD, thus providing insights regarding different community assembly mechanisms and their interactions. Therefore, it is important to take species survival with growth and species life-history strategies into account when focusing on forest dynamics.
基金funded by the Natural Science Foundation of Yunnan Province(980006Z).
文摘Information on the genetic relationship between tropical maize (Zea mays L), germplasm and temperate maize germplasm is of great value to maize breeding. The objective of this study was to determine the combining ability and genetic relationship of 25 inbreds extracted from five tropical maize populations and a land race, with four temperate maize inbreds (Huangzaosi, Mol7, B73 and Dan 340). The 25 tropical inbreds were crossed with the four temperate inbreds and evaluated. Lines from Suwanl and POP28 had high general combining ability (GCA) for grain yield. The lines from POP32 (ETO) had the highest special combining ability (SCA) with B73; the average SCA value of the 5 lines was 879 kg/ha. The lines from Suwanl had the second-highest SCA (584 kg/ha) with Huangzaosi. The lines from Suwanl had the greatest relative heterosis (20%) with B73, followed by the lines from POP32 (ETO) with B73 (19%). Five heterotic patterns have been identified from this study: Suwanl × Reid, ETO × Reid, POP28× Reid, POP28× Ludahong-gu, and Suwan1× Lancaster.