期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融合CFCC和Teager能量算子倒谱参数的语音识别 被引量:8
1
作者 史燕燕 白静 《计算机科学》 CSCD 北大核心 2019年第5期286-289,共4页
针对现有表征语音特性的特征提取不完善的问题,提出了一种耳蜗滤波倒谱系数(Cochlear Filter Cepstral Coefficients,CFCC)和Teager能量算子倒谱参数(Teager Energy Operators Cepstral Coefficients,TEOCC)相互融合的方法。该方法将表... 针对现有表征语音特性的特征提取不完善的问题,提出了一种耳蜗滤波倒谱系数(Cochlear Filter Cepstral Coefficients,CFCC)和Teager能量算子倒谱参数(Teager Energy Operators Cepstral Coefficients,TEOCC)相互融合的方法。该方法将表征人耳听觉特性的CFCC和体现非线性能量特性的TEOCC的融合特征应用到语音识别系统中,并联合主成分分析(Principal Components Analysis,PCA)对该融合特征进行特征选择和优化,最后通过支持向量机进行语音识别。实验结果表明:该融合特征与单一特征相比具有更佳的语音识别性能,结合PCA后其语音识别的准确率平均提高了3.7%。 展开更多
关键词 耳蜗滤波倒谱系数 Teager能量算子倒谱参数 主成分分析 语音识别
下载PDF
基于VMD和Teager能量算子倒谱的方言语种识别 被引量:1
2
作者 付英 刘增力 《通信技术》 2022年第4期435-442,共8页
针对汉语方言识别率低和在噪声环境下鲁棒性差问题,将特征提取与语音增强结合,提出一种基于变分模态分解(Variational Mode Decomposition,VMD)的改进梅尔频率倒谱系数(MelFrequency Cepstral Coefficients,MFCC)和Teager能量算子倒谱系... 针对汉语方言识别率低和在噪声环境下鲁棒性差问题,将特征提取与语音增强结合,提出一种基于变分模态分解(Variational Mode Decomposition,VMD)的改进梅尔频率倒谱系数(MelFrequency Cepstral Coefficients,MFCC)和Teager能量算子倒谱系数(Teager Energy Operator Cepstral Coefficient,TEOCC)融合的特征提取算法。该算法先将方言信号经VMD改进算法提取特征后再与TEOCC融合,最后通过高斯混合通用背景模型(Gaussian Mixture Model-Universal Background Model,GMM-UBM)进行方言语种识别。实验结果表明:相对于单一的MFCC特征,所提方法在无噪和有噪环境下识别率均有所提升,验证了改进算法在方言语种识别中的有效性。 展开更多
关键词 方言识别 变分模态分解 Teager能量算子倒谱系数 语音增强
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部