为了提高说话人识别的准确率,可以同时采用多个特征参数,针对综合特征参数中各维分量对识别结果的影响可能不一样,同等对待并不一定是最优的方案这个问题,提出基于Fisher准则的梅尔频率倒谱系数(MFCC)、线性预测梅尔倒谱系数(LPMFCC)、T...为了提高说话人识别的准确率,可以同时采用多个特征参数,针对综合特征参数中各维分量对识别结果的影响可能不一样,同等对待并不一定是最优的方案这个问题,提出基于Fisher准则的梅尔频率倒谱系数(MFCC)、线性预测梅尔倒谱系数(LPMFCC)、Teager能量算子倒谱参数(TEOCC)相混合的特征参数提取方法。首先,提取语音信号的MFCC、LPMFCC和TEOCC三种参数;然后,计算MFCC和LPMFCC参数中各维分量的Fisher比,分别选出六个Fisher比高的分量与TEOCC参数组合成混合特征参数;最后,采用TIMIT语音库和NOISEX-92噪声库进行说话人识别实验。仿真实验表明,所提方法与MFCC、LPMFCC、MFCC+LPMFCC、基于Fisher比的梅尔倒谱系数混合特征提取方法以及基于主成分分析(PCA)的特征抽取方法相比,在采用高斯混合模型(GMM)和BP神经网络的平均识别率在纯净语音环境下分别提高了21.65个百分点、18.39个百分点、15.61个百分点、15.01个百分点与22.70个百分点;在30 d B噪声环境下,则分别提升了15.15个百分点、10.81个百分点、8.69个百分点、7.64个百分点与17.76个百分点。实验结果表明,该混合特征参数能够有效提高说话人识别率,且具有更好的鲁棒性。展开更多
为了提高低信噪比下语种识别的准确率,引入一种新的特征提取融合方法.在前端加入有声段检测,并基于人耳听觉感知模型提取伽玛通频率倒谱系数(Gammatone Frequency Cepstrum Coefficient,GFCC)特征,通过主成分分析对特征进行压缩、降噪,...为了提高低信噪比下语种识别的准确率,引入一种新的特征提取融合方法.在前端加入有声段检测,并基于人耳听觉感知模型提取伽玛通频率倒谱系数(Gammatone Frequency Cepstrum Coefficient,GFCC)特征,通过主成分分析对特征进行压缩、降噪,融合每个有声段的Teager能量算子倒谱参数,通过高斯混合通用背景模型进行语种识别验证.实验结果表明,在信噪比为-5~0 dB时,相对于基于对数梅尔尺度滤波器组能量特征方法,融合特征集方法对5种语言的识别率,分别提升了23.7%~34.0%,其他信噪比等级下识别率也有明显的提升.展开更多
文摘为了提高说话人识别的准确率,可以同时采用多个特征参数,针对综合特征参数中各维分量对识别结果的影响可能不一样,同等对待并不一定是最优的方案这个问题,提出基于Fisher准则的梅尔频率倒谱系数(MFCC)、线性预测梅尔倒谱系数(LPMFCC)、Teager能量算子倒谱参数(TEOCC)相混合的特征参数提取方法。首先,提取语音信号的MFCC、LPMFCC和TEOCC三种参数;然后,计算MFCC和LPMFCC参数中各维分量的Fisher比,分别选出六个Fisher比高的分量与TEOCC参数组合成混合特征参数;最后,采用TIMIT语音库和NOISEX-92噪声库进行说话人识别实验。仿真实验表明,所提方法与MFCC、LPMFCC、MFCC+LPMFCC、基于Fisher比的梅尔倒谱系数混合特征提取方法以及基于主成分分析(PCA)的特征抽取方法相比,在采用高斯混合模型(GMM)和BP神经网络的平均识别率在纯净语音环境下分别提高了21.65个百分点、18.39个百分点、15.61个百分点、15.01个百分点与22.70个百分点;在30 d B噪声环境下,则分别提升了15.15个百分点、10.81个百分点、8.69个百分点、7.64个百分点与17.76个百分点。实验结果表明,该混合特征参数能够有效提高说话人识别率,且具有更好的鲁棒性。
文摘为了提高低信噪比下语种识别的准确率,引入一种新的特征提取融合方法.在前端加入有声段检测,并基于人耳听觉感知模型提取伽玛通频率倒谱系数(Gammatone Frequency Cepstrum Coefficient,GFCC)特征,通过主成分分析对特征进行压缩、降噪,融合每个有声段的Teager能量算子倒谱参数,通过高斯混合通用背景模型进行语种识别验证.实验结果表明,在信噪比为-5~0 dB时,相对于基于对数梅尔尺度滤波器组能量特征方法,融合特征集方法对5种语言的识别率,分别提升了23.7%~34.0%,其他信噪比等级下识别率也有明显的提升.