Acid loss and plasticization of phosphoric acid(PA)-doped high-temperature polymer electrolyte membranes(HT-PEMs)are critical limitations to their practical application in fuel cells.To overcome these barriers,poly(te...Acid loss and plasticization of phosphoric acid(PA)-doped high-temperature polymer electrolyte membranes(HT-PEMs)are critical limitations to their practical application in fuel cells.To overcome these barriers,poly(terphenyl piperidinium)s constructed from the m-and p-isomers of terphenyl were synthesized to regulate the microstructure of the membrane.Highly rigid p-terphenyl units prompt the formation of moderate PA aggregates,where the ion-pair interaction between piperidinium and biphosphate is reinforced,leading to a reduction in the plasticizing effect.As a result,there are trade-offs between the proton conductivity,mechanical strength,and PA retention of the membranes with varied m/p-isomer ratios.The designed PA-doped PTP-20m membrane exhibits superior ionic conductivity,good mechanical strength,and excellent PA retention over a wide range of temperature(80–160°C)as well as satisfactory resistance to harsh accelerated aging tests.As a result,the membrane presents a desirable combination of performance(1.462 W cm^(-2) under the H_(2)/O_(2)condition,which is 1.5 times higher than that of PBI-based membrane)and durability(300 h at 160°C and 0.2 A cm^(-2))in the fuel cell.The results of this study provide new insights that will guide molecular design from the perspective of microstructure to improve the performance and robustness of HT-PEMs.展开更多
Relationships between the structure characteristics of natural p-terphenyl com- pounds isolated from three edible mushrooms (Thelephora ganbajun, Thelephora aeronautical, and Boletopsis grisea) indigenous to China a...Relationships between the structure characteristics of natural p-terphenyl com- pounds isolated from three edible mushrooms (Thelephora ganbajun, Thelephora aeronautical, and Boletopsis grisea) indigenous to China and their mechanism of antioxidant activity were studied. Geometry structures of terphenyl molecule and four corresponding radicals, bond dissociation energy (BDE), frontier orbitals (HOMO and LUMO) and single electron density were calculated using DFT methods (B3LYP/6-311G**). The computational results which are consistent with the experimental data well show that terphenyl molecule scavenges DPPH radical by hydrogen abstract mechanism and the high antioxidant activity depends on the substitution position of hydroxyls. Two active 7-, 8-hydroxyls facilitate the hydrogen abstraction due to the intramolecular hydrogen bond and the resonance effect makes 4-hydroxyl radical more stable.展开更多
The mechanism of ionization and fragmentation for terphenyl (diphenylbenzene) with three structural ring isomers (ortho-, meta- and para-), and stilbene (1,2-diphenylethylene) with two geometrical isomers (trans- and ...The mechanism of ionization and fragmentation for terphenyl (diphenylbenzene) with three structural ring isomers (ortho-, meta- and para-), and stilbene (1,2-diphenylethylene) with two geometrical isomers (trans- and cis-) by EI mass spectrometry and ionization efficiency curves are investigation.展开更多
A simple and efficient catalytic system for Na2PdC14 catalyzing the Suzuki-Miyaura reaction of dibromoben- zene and arylboronic acid has been developed by using 2N2O-salen as a ligand in H2O/EtOH (V : V=4 : 1) at ...A simple and efficient catalytic system for Na2PdC14 catalyzing the Suzuki-Miyaura reaction of dibromoben- zene and arylboronic acid has been developed by using 2N2O-salen as a ligand in H2O/EtOH (V : V=4 : 1) at 100 ℃. Using this method, the reactions of substrates containing sterically demanding ortho substituents (e.g. dibromo- benzene and/or arylboronic acids) proceeded efficiently, with the corresponding terphenyl derivatives being pro- duced in moderate to excellent yields. Furthermore, this method offers interesting features for the multi-gram scale synthesis of terphenyl compound.展开更多
基金supported by The National Key Research and Development Program of China(2021YFB4001204)National Natural Science Foundation of China(22379143)。
文摘Acid loss and plasticization of phosphoric acid(PA)-doped high-temperature polymer electrolyte membranes(HT-PEMs)are critical limitations to their practical application in fuel cells.To overcome these barriers,poly(terphenyl piperidinium)s constructed from the m-and p-isomers of terphenyl were synthesized to regulate the microstructure of the membrane.Highly rigid p-terphenyl units prompt the formation of moderate PA aggregates,where the ion-pair interaction between piperidinium and biphosphate is reinforced,leading to a reduction in the plasticizing effect.As a result,there are trade-offs between the proton conductivity,mechanical strength,and PA retention of the membranes with varied m/p-isomer ratios.The designed PA-doped PTP-20m membrane exhibits superior ionic conductivity,good mechanical strength,and excellent PA retention over a wide range of temperature(80–160°C)as well as satisfactory resistance to harsh accelerated aging tests.As a result,the membrane presents a desirable combination of performance(1.462 W cm^(-2) under the H_(2)/O_(2)condition,which is 1.5 times higher than that of PBI-based membrane)and durability(300 h at 160°C and 0.2 A cm^(-2))in the fuel cell.The results of this study provide new insights that will guide molecular design from the perspective of microstructure to improve the performance and robustness of HT-PEMs.
基金Supported by NNSFC(10901135,11171293)Natural Science Foundation of Yunnan Province(2008CD081,2010CC003)+1 种基金Educational Commission of Yunnan Province(2011Y296)Foundation of Honghe University(2010PY0104,10XJY113)
文摘Relationships between the structure characteristics of natural p-terphenyl com- pounds isolated from three edible mushrooms (Thelephora ganbajun, Thelephora aeronautical, and Boletopsis grisea) indigenous to China and their mechanism of antioxidant activity were studied. Geometry structures of terphenyl molecule and four corresponding radicals, bond dissociation energy (BDE), frontier orbitals (HOMO and LUMO) and single electron density were calculated using DFT methods (B3LYP/6-311G**). The computational results which are consistent with the experimental data well show that terphenyl molecule scavenges DPPH radical by hydrogen abstract mechanism and the high antioxidant activity depends on the substitution position of hydroxyls. Two active 7-, 8-hydroxyls facilitate the hydrogen abstraction due to the intramolecular hydrogen bond and the resonance effect makes 4-hydroxyl radical more stable.
文摘The mechanism of ionization and fragmentation for terphenyl (diphenylbenzene) with three structural ring isomers (ortho-, meta- and para-), and stilbene (1,2-diphenylethylene) with two geometrical isomers (trans- and cis-) by EI mass spectrometry and ionization efficiency curves are investigation.
文摘A simple and efficient catalytic system for Na2PdC14 catalyzing the Suzuki-Miyaura reaction of dibromoben- zene and arylboronic acid has been developed by using 2N2O-salen as a ligand in H2O/EtOH (V : V=4 : 1) at 100 ℃. Using this method, the reactions of substrates containing sterically demanding ortho substituents (e.g. dibromo- benzene and/or arylboronic acids) proceeded efficiently, with the corresponding terphenyl derivatives being pro- duced in moderate to excellent yields. Furthermore, this method offers interesting features for the multi-gram scale synthesis of terphenyl compound.