For plant-wide processes with multiple operating conditions,the multimode feature imposes some challenges to conventional monitoring techniques.Hence,to solve this problem,this paper provides a novel local component b...For plant-wide processes with multiple operating conditions,the multimode feature imposes some challenges to conventional monitoring techniques.Hence,to solve this problem,this paper provides a novel local component based principal component analysis(LCPCA)approach for monitoring the status of a multimode process.In LCPCA,the process prior knowledge of mode division is not required and it purely based on the process data.Firstly,LCPCA divides the processes data into multiple local components using finite Gaussian mixture model mixture(FGMM).Then,calculating the posterior probability is applied to determine each sample belonging to which local component.After that,the local component information(such as mean and standard deviation)is used to standardize each sample of local component.Finally,the standardized samples of each local component are combined to train PCA monitoring model.Based on the PCA monitoring model,two monitoring statistics T^(2) and SPE are used for monitoring multimode processes.Through a numerical example and the Tennessee Eastman(TE)process,the monitoring result demonstrates that LCPCA outperformed conventional PCA and LNS-PCA in the fault detection rate.展开更多
Fault diagnosis plays an important role in complicated industrial process.It is a challenging task to detect,identify and locate faults quickly and accurately for large-scale process system.To solve the problem,a nove...Fault diagnosis plays an important role in complicated industrial process.It is a challenging task to detect,identify and locate faults quickly and accurately for large-scale process system.To solve the problem,a novel Multi Boost-based integrated ENN(extension neural network) fault diagnosis method is proposed.Fault data of complicated chemical process have some difficult-to-handle characteristics,such as high-dimension,non-linear and non-Gaussian distribution,so we use margin discriminant projection(MDP) algorithm to reduce dimensions and extract main features.Then,the affinity propagation(AP) clustering method is used to select core data and boundary data as training samples to reduce memory consumption and shorten learning time.Afterwards,an integrated ENN classifier based on Multi Boost strategy is constructed to identify fault types.The artificial data sets are tested to verify the effectiveness of the proposed method and make a detailed sensitivity analysis for the key parameters.Finally,a real industrial system—Tennessee Eastman(TE) process is employed to evaluate the performance of the proposed method.And the results show that the proposed method is efficient and capable to diagnose various types of faults in complicated chemical process.展开更多
Nonlinear characteristic fault detection and diagnosis method based on higher-order statistical(HOS) is an effective data-driven method, but the calculation costs much for a large-scale process control system. An HOS-...Nonlinear characteristic fault detection and diagnosis method based on higher-order statistical(HOS) is an effective data-driven method, but the calculation costs much for a large-scale process control system. An HOS-ISM fault diagnosis framework combining interpretative structural model(ISM) and HOS is proposed:(1) the adjacency matrix is determined by partial correlation coefficient;(2) the modified adjacency matrix is defined by directed graph with prior knowledge of process piping and instrument diagram;(3) interpretative structural for large-scale process control system is built by this ISM method; and(4) non-Gaussianity index, nonlinearity index, and total nonlinearity index are calculated dynamically based on interpretative structural to effectively eliminate uncertainty of the nonlinear characteristic diagnostic method with reasonable sampling period and data window. The proposed HOS-ISM fault diagnosis framework is verified by the Tennessee Eastman process and presents improvement for highly non-linear characteristic for selected fault cases.展开更多
Generative adversarial network(GAN) is the most exciting machine learning breakthrough in recent years,and it trains the learning model by finding the Nash equilibrium of a two-player zero-sum game.GAN is composed of ...Generative adversarial network(GAN) is the most exciting machine learning breakthrough in recent years,and it trains the learning model by finding the Nash equilibrium of a two-player zero-sum game.GAN is composed of a generator and a discriminator,both trained with the adversarial learning mechanism.In this paper,we introduce and investigate the use of GAN for novelty detection.In training,GAN learns from ordinary data.Then,using previously unknown data,the generator and the discriminator with the designed decision boundaries can both be used to separate novel patterns from ordinary patterns.The proposed GAN-based novelty detection method demonstrates a competitive performance on the MNIST digit database and the Tennessee Eastman(TE) benchmark process compared with the PCA-based novelty detection methods using Hotelling's T^2 and squared prediction error statistics.展开更多
基金National Natural Science Foundation of China(61673279)。
文摘For plant-wide processes with multiple operating conditions,the multimode feature imposes some challenges to conventional monitoring techniques.Hence,to solve this problem,this paper provides a novel local component based principal component analysis(LCPCA)approach for monitoring the status of a multimode process.In LCPCA,the process prior knowledge of mode division is not required and it purely based on the process data.Firstly,LCPCA divides the processes data into multiple local components using finite Gaussian mixture model mixture(FGMM).Then,calculating the posterior probability is applied to determine each sample belonging to which local component.After that,the local component information(such as mean and standard deviation)is used to standardize each sample of local component.Finally,the standardized samples of each local component are combined to train PCA monitoring model.Based on the PCA monitoring model,two monitoring statistics T^(2) and SPE are used for monitoring multimode processes.Through a numerical example and the Tennessee Eastman(TE)process,the monitoring result demonstrates that LCPCA outperformed conventional PCA and LNS-PCA in the fault detection rate.
基金Project (61203021) supported by the National Natural Science Foundation of ChinaProject (2011216011) supported by the Key Science and Technology Program of Liaoning Province,China+1 种基金Project (2013020024) supported by the Natural Science Foundation of Liaoning Province,ChinaProject (LJQ2015061) supported by the Program for Liaoning Excellent Talents in Universities,China
文摘Fault diagnosis plays an important role in complicated industrial process.It is a challenging task to detect,identify and locate faults quickly and accurately for large-scale process system.To solve the problem,a novel Multi Boost-based integrated ENN(extension neural network) fault diagnosis method is proposed.Fault data of complicated chemical process have some difficult-to-handle characteristics,such as high-dimension,non-linear and non-Gaussian distribution,so we use margin discriminant projection(MDP) algorithm to reduce dimensions and extract main features.Then,the affinity propagation(AP) clustering method is used to select core data and boundary data as training samples to reduce memory consumption and shorten learning time.Afterwards,an integrated ENN classifier based on Multi Boost strategy is constructed to identify fault types.The artificial data sets are tested to verify the effectiveness of the proposed method and make a detailed sensitivity analysis for the key parameters.Finally,a real industrial system—Tennessee Eastman(TE) process is employed to evaluate the performance of the proposed method.And the results show that the proposed method is efficient and capable to diagnose various types of faults in complicated chemical process.
基金Supported by the National Natural Science Foundation of China(61374166)the Doctoral Fund of Ministry of Education of China(20120010110010)the Natural Science Fund of Ningbo(2012A610001)
文摘Nonlinear characteristic fault detection and diagnosis method based on higher-order statistical(HOS) is an effective data-driven method, but the calculation costs much for a large-scale process control system. An HOS-ISM fault diagnosis framework combining interpretative structural model(ISM) and HOS is proposed:(1) the adjacency matrix is determined by partial correlation coefficient;(2) the modified adjacency matrix is defined by directed graph with prior knowledge of process piping and instrument diagram;(3) interpretative structural for large-scale process control system is built by this ISM method; and(4) non-Gaussianity index, nonlinearity index, and total nonlinearity index are calculated dynamically based on interpretative structural to effectively eliminate uncertainty of the nonlinear characteristic diagnostic method with reasonable sampling period and data window. The proposed HOS-ISM fault diagnosis framework is verified by the Tennessee Eastman process and presents improvement for highly non-linear characteristic for selected fault cases.
文摘Generative adversarial network(GAN) is the most exciting machine learning breakthrough in recent years,and it trains the learning model by finding the Nash equilibrium of a two-player zero-sum game.GAN is composed of a generator and a discriminator,both trained with the adversarial learning mechanism.In this paper,we introduce and investigate the use of GAN for novelty detection.In training,GAN learns from ordinary data.Then,using previously unknown data,the generator and the discriminator with the designed decision boundaries can both be used to separate novel patterns from ordinary patterns.The proposed GAN-based novelty detection method demonstrates a competitive performance on the MNIST digit database and the Tennessee Eastman(TE) benchmark process compared with the PCA-based novelty detection methods using Hotelling's T^2 and squared prediction error statistics.