非侵入式负荷分解对于节能减排、负荷调峰、智能用能等方面均具有重要的现实意义。针对目前非侵入式负荷分解方法在低频采样条件下(1 Hz及以下)分解准确率较低的问题,提出了一种基于卷积神经网络(convolution netural network,CNN)与长...非侵入式负荷分解对于节能减排、负荷调峰、智能用能等方面均具有重要的现实意义。针对目前非侵入式负荷分解方法在低频采样条件下(1 Hz及以下)分解准确率较低的问题,提出了一种基于卷积神经网络(convolution netural network,CNN)与长短期记忆网络(long short-term memory,LSTM)相结合的seq2seq的非侵入式负荷分解算法(seq2seq based on CNN and LSTM,seq2seqBCL)。该深度学习模型将功率时间序列作为网络的输入,通过CNN做特征提取。考虑到电力数据的时序性,增加了LSTM层进行电器识别,相比于NILMTK中seq2seq模型降低了网络层数,简化了网络结构。在REDD数据集上对算法性能进行了评估,所提出的算法提升了整个网络系统的性能,与FHMM、CO和传统seq2seq算法相比,负荷分解准确率有明显提升。展开更多
针对现有的数字化档案多标签分类方法存在分类标签之间缺少关联性的问题,提出一种用于档案多标签分类的深层神经网络模型ALBERT-Seq2Seq-Attention.该模型通过ALBERT(A Little BERT)预训练语言模型内部多层双向的Transfomer结构获取进...针对现有的数字化档案多标签分类方法存在分类标签之间缺少关联性的问题,提出一种用于档案多标签分类的深层神经网络模型ALBERT-Seq2Seq-Attention.该模型通过ALBERT(A Little BERT)预训练语言模型内部多层双向的Transfomer结构获取进行文本特征向量的提取,并获得上下文语义信息;将预训练提取的文本特征作为Seq2Seq-Attention(Sequence to Sequence-Attention)模型的输入序列,构建标签字典以获取多标签间的关联关系.将分类模型在3种数据集上分别进行对比实验,结果表明:模型分类的效果F1值均超过90%.该模型不仅能提高档案文本的多标签分类效果,也能关注标签之间的相关关系.展开更多
以非侵入式负荷分解为基础,对用户异常用电行为进行研究。采用Kmeans聚类算法提取负荷状态特征;采用深度学习算法中的序列到序列翻译(sequence to sequence, seq2seq)模型,将电力用户用电总数据分解成单个电器的功耗数据;结合SVM算法对...以非侵入式负荷分解为基础,对用户异常用电行为进行研究。采用Kmeans聚类算法提取负荷状态特征;采用深度学习算法中的序列到序列翻译(sequence to sequence, seq2seq)模型,将电力用户用电总数据分解成单个电器的功耗数据;结合SVM算法对分解后多种家用电器用电数据进行异常检测。在UKDALE数据集实验结果表明,该模型不仅能提高分解准确度、降低分解误差,而且多个电器数据结合分析实现了用户异常行为检测。展开更多
随着音频载体设备的发展,扬声器在向着体积小、功率大的趋势发展,长时间工作在大信号驱动时音圈发热严重,会出现音圈断路等热损坏问题,通过对扬声器电参量数据的预测,可以降低功放功率等方法保护音圈,延长使用寿命。针对功率试验中扬声...随着音频载体设备的发展,扬声器在向着体积小、功率大的趋势发展,长时间工作在大信号驱动时音圈发热严重,会出现音圈断路等热损坏问题,通过对扬声器电参量数据的预测,可以降低功放功率等方法保护音圈,延长使用寿命。针对功率试验中扬声器电参量数据的时序特性,提高预测准确率,提出一种基于变分模态分解(variational mode decomposition,VMD)和编解码器(sequence to sequence,Seq2seq)模型的扬声器电参量多步预测方法。该方法首先使用VMD将原始数据进行分解,降低数据的非平稳性,利用分解后的数据构建训练集并使用Seq2seq网络模型进行训练和多步预测。仿真结果表明,所提出的预测模型在单步预测情况下,模型评价指标均方根误差(RMSE)为0.044、平均绝对百分比误差(MAPE)为0.15%、决定系数(R^(2))为0.94,在五步预测的情况下,模型评价指标RMSE为0.05、MAPE为0.17%、R^(2)为0.92,均优于其余对比模型,表明所提出模型的精度更高。展开更多
文摘非侵入式负荷分解对于节能减排、负荷调峰、智能用能等方面均具有重要的现实意义。针对目前非侵入式负荷分解方法在低频采样条件下(1 Hz及以下)分解准确率较低的问题,提出了一种基于卷积神经网络(convolution netural network,CNN)与长短期记忆网络(long short-term memory,LSTM)相结合的seq2seq的非侵入式负荷分解算法(seq2seq based on CNN and LSTM,seq2seqBCL)。该深度学习模型将功率时间序列作为网络的输入,通过CNN做特征提取。考虑到电力数据的时序性,增加了LSTM层进行电器识别,相比于NILMTK中seq2seq模型降低了网络层数,简化了网络结构。在REDD数据集上对算法性能进行了评估,所提出的算法提升了整个网络系统的性能,与FHMM、CO和传统seq2seq算法相比,负荷分解准确率有明显提升。
文摘针对现有的数字化档案多标签分类方法存在分类标签之间缺少关联性的问题,提出一种用于档案多标签分类的深层神经网络模型ALBERT-Seq2Seq-Attention.该模型通过ALBERT(A Little BERT)预训练语言模型内部多层双向的Transfomer结构获取进行文本特征向量的提取,并获得上下文语义信息;将预训练提取的文本特征作为Seq2Seq-Attention(Sequence to Sequence-Attention)模型的输入序列,构建标签字典以获取多标签间的关联关系.将分类模型在3种数据集上分别进行对比实验,结果表明:模型分类的效果F1值均超过90%.该模型不仅能提高档案文本的多标签分类效果,也能关注标签之间的相关关系.
文摘以非侵入式负荷分解为基础,对用户异常用电行为进行研究。采用Kmeans聚类算法提取负荷状态特征;采用深度学习算法中的序列到序列翻译(sequence to sequence, seq2seq)模型,将电力用户用电总数据分解成单个电器的功耗数据;结合SVM算法对分解后多种家用电器用电数据进行异常检测。在UKDALE数据集实验结果表明,该模型不仅能提高分解准确度、降低分解误差,而且多个电器数据结合分析实现了用户异常行为检测。
文摘针对现有基于深度神经网络的代码缺陷检测方法无法分析缺陷特征并输出相关评审建议的问题,提出一种基于大感知域LSTM-Seq2Seq模型的代码缺陷检测方法。首先,使用长短期记忆网络(LSTM,long short-term memory)学习缺陷代码的编码特征,建立缺陷判别模型。其次,针对模型与数据集不匹配的问题,向序列到序列模型(Seq2Seq,sequence to sequence)引入代码段长度系数,提升模型对代码评审任务的适用度;通过建立代码缺陷特征与评审建议特征间的映射关系建立了代码分析模型,实现评审输出功能。最后,利用公开数据集SARD对该方法进行了验证,该方法在准确率、召回率、F1值方面的测试结果分别为92.50%、87.20%、87.60%,典型代码缺陷输出的评审文本与专家评审的文本相似度为85.99%,可有效减少评审过程对专家经验的依赖。
文摘随着音频载体设备的发展,扬声器在向着体积小、功率大的趋势发展,长时间工作在大信号驱动时音圈发热严重,会出现音圈断路等热损坏问题,通过对扬声器电参量数据的预测,可以降低功放功率等方法保护音圈,延长使用寿命。针对功率试验中扬声器电参量数据的时序特性,提高预测准确率,提出一种基于变分模态分解(variational mode decomposition,VMD)和编解码器(sequence to sequence,Seq2seq)模型的扬声器电参量多步预测方法。该方法首先使用VMD将原始数据进行分解,降低数据的非平稳性,利用分解后的数据构建训练集并使用Seq2seq网络模型进行训练和多步预测。仿真结果表明,所提出的预测模型在单步预测情况下,模型评价指标均方根误差(RMSE)为0.044、平均绝对百分比误差(MAPE)为0.15%、决定系数(R^(2))为0.94,在五步预测的情况下,模型评价指标RMSE为0.05、MAPE为0.17%、R^(2)为0.92,均优于其余对比模型,表明所提出模型的精度更高。