期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于mRMR与因子分解机的分类模型研究
被引量:
3
1
作者
王美
龙华
+1 位作者
邵玉斌
杜庆治
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2020年第1期96-102,共7页
很多学者用“全球恐怖主义研究数据库”GTD数据集,采用博弈论、K近邻法和支持向量机等分析恐怖事件的聚集性,已经取得一些成果.但在前期研究中未有很好考虑数据的稀疏性以及高维度多冗余等会导致聚集分类准确率不高的问题.本文提出一种...
很多学者用“全球恐怖主义研究数据库”GTD数据集,采用博弈论、K近邻法和支持向量机等分析恐怖事件的聚集性,已经取得一些成果.但在前期研究中未有很好考虑数据的稀疏性以及高维度多冗余等会导致聚集分类准确率不高的问题.本文提出一种基于最小冗余最大相关与因子分解机结合的TFM分类模型,使用增量搜索方法寻找近似最优的特征解决高维度多冗余问题和FM方法解决数据稀疏问题,并对预处理后的恐怖袭击事件数据用TFM模型做量化分类.文中使用朴素贝叶斯NB、支持向量机SVM、逻辑回归LR与TFM等4个模型的“马修斯相关系数”MCC进行比较,结果显示TFM的MCC相对于其他三个模型NB、SVM、LR分别提高了49.9%,2.5%,2.3%,可见TFM模型有一定可行性.
展开更多
关键词
最小冗余最大相关
GTD
因子分解机
马修斯相关系数
tfm分类模型
下载PDF
职称材料
题名
基于mRMR与因子分解机的分类模型研究
被引量:
3
1
作者
王美
龙华
邵玉斌
杜庆治
机构
昆明理工大学信息工程与自动化学院
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2020年第1期96-102,共7页
基金
国家自然科学基金(61761025)
文摘
很多学者用“全球恐怖主义研究数据库”GTD数据集,采用博弈论、K近邻法和支持向量机等分析恐怖事件的聚集性,已经取得一些成果.但在前期研究中未有很好考虑数据的稀疏性以及高维度多冗余等会导致聚集分类准确率不高的问题.本文提出一种基于最小冗余最大相关与因子分解机结合的TFM分类模型,使用增量搜索方法寻找近似最优的特征解决高维度多冗余问题和FM方法解决数据稀疏问题,并对预处理后的恐怖袭击事件数据用TFM模型做量化分类.文中使用朴素贝叶斯NB、支持向量机SVM、逻辑回归LR与TFM等4个模型的“马修斯相关系数”MCC进行比较,结果显示TFM的MCC相对于其他三个模型NB、SVM、LR分别提高了49.9%,2.5%,2.3%,可见TFM模型有一定可行性.
关键词
最小冗余最大相关
GTD
因子分解机
马修斯相关系数
tfm分类模型
Keywords
mRMR
GTD
Factorization machines
MCC
tfm
classification model
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于mRMR与因子分解机的分类模型研究
王美
龙华
邵玉斌
杜庆治
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2020
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部