Cholesteric liquid crystals(CLCs) have recently sparked an enormous amount of interest in the development of soft matter materials due to their unique ability to self-organize into a helical supra-molecular architec...Cholesteric liquid crystals(CLCs) have recently sparked an enormous amount of interest in the development of soft matter materials due to their unique ability to self-organize into a helical supra-molecular architecture and their excellent selective reflection of light based on the Bragg relationship.Nowadays,by the virtue of building the self-organized nanostructures with pitch gradient or non-uniform pitch distribution,extensive work has already been performed to obtain CLC films with a broad reflection band.Based on authors' many years' research experience,this critical review systematically summarizes the physical and optical background of the CLCs with broadband reflection characteristics,methods to obtain broadband reflection of CLCs,as well as the application in the field of intelligent optical modulation materials.Combined with the research status and the advantages in the field,the important basic and applied scientific problems in the research direction are also introduced.展开更多
The recent progress on the liquid crystalline(LC)dispersion of two-dimensional(2D)transition metal carbides(MXenes)has propelled this unique nanomaterial into a realm of high-performance architectures,such as films an...The recent progress on the liquid crystalline(LC)dispersion of two-dimensional(2D)transition metal carbides(MXenes)has propelled this unique nanomaterial into a realm of high-performance architectures,such as films and fibers.Additionally,compared to architectures made from typical non-LC dispersions,those derived from LC MXene possess tunable ion transport routes and enhanced conductivity and physical properties,demonstrating great potential for a wide range of applications,such as electronic displays,smart glasses,and thermal camouflage devices.This review provides an overview of the progress achieved in the production and processing of LC MXenes,including critical discussions on satisfying the required conditions for LC formation.It also highlights how acquiring LC MXenes has broadened the current solution-based manufacturing paradigm of MXene-based architectures,resulting in unprecedented performances in their conventional applications(e.g.,energy storage and strain sensing)and in their emerging uses(e.g.,tribology).Opportunities for innovation and foreseen challenges are also discussed,offering future research directions on how to further benefit from the exciting potential of LC MXenes with the aim of promoting their widespread use in designing and manufacturing advanced materials and applications.展开更多
Liquid Crystal Elastomers(LCEs)are renowned for their reversible deformation capabilities.Yet,enhancing their mechanical strength while retaining such flexibility has posed a considerable challenge.To overcome this,we...Liquid Crystal Elastomers(LCEs)are renowned for their reversible deformation capabilities.Yet,enhancing their mechanical strength while retaining such flexibility has posed a considerable challenge.To overcome this,we utilized 4D printing to develop an innovative composite of LCE with carbon fiber fabric(LCEC).This approach has notably increased the tensile strength of LCE by eightfold,all the while maintaining its exceptional capacity for reversible deforma-tion.By adjusting the alignment angle between carbon fiber and the LCE printing direction from 0°to 90°,the LCEC demonstrates an array of new deformation patterns,including bending,twisting,wrapping,and S-shaped transformations,which are distinct from pure LCE materials.Our study unveils that LCE composites exhibit deformation processes markedly different from their pure material counterparts,with the ability of pure LCE to sustain tensile strains exceeding 1900%.These findings,previously undocumented and unexplored,represent a substantial contribution to the field of smart materials.Employing finite element analysis,we explored the carbon fiber and LcE matrix dynamics,revealing bending mechanics in LCECs.This combined experimental and simulation approach yields crucial insights for crafting durable,high-strength LCECs with diverse deformational properties,advancing smart material technology.展开更多
A novel horizontal push-pull multi-substrate epitaxy boat with three separate cells is introduced in this article, with which multi-substrate LPE processing is feasible in horizontal LPE furnace. The processes of LPE ...A novel horizontal push-pull multi-substrate epitaxy boat with three separate cells is introduced in this article, with which multi-substrate LPE processing is feasible in horizontal LPE furnace. The processes of LPE AlxGa1-x)As/ GaAs solar cells are studied and the efficiency of the solar cells achieved 19.8% (AMO, 25℃, 120 mW/cm2).展开更多
We present a theoretical study of surface Tamm states localized at an interface that separates a semi-infinite isotropic left-handed metamaterial (LHM) and one-dimensional photonic crystal made of anisotropic in- de...We present a theoretical study of surface Tamm states localized at an interface that separates a semi-infinite isotropic left-handed metamaterial (LHM) and one-dimensional photonic crystal made of anisotropic in- definite metamaterial (IMM) (always-cutoff material). We discuss the dispersion properties of the Tamm states in different bandgaps and demonstrate that the cap layer, angular frequency, and arrangement of photonic crystal can provide flexible control for the dispersive properties of the Tamm states.展开更多
Crosslinked liquid crystal polymers(CLCPs)are smart materials that combine the anisotropy of liquid crystals(LCs)with the elasticity of rubber.When subjected to external stimuli,they exhibit exceptional two-way shape ...Crosslinked liquid crystal polymers(CLCPs)are smart materials that combine the anisotropy of liquid crystals(LCs)with the elasticity of rubber.When subjected to external stimuli,they exhibit exceptional two-way shape memory behavior.Among the various stimuli,electrical energy has the advantages of cleanliness,stability,and high controllability;hence,it is widely used for controlling CLCP-based soft actuators,thus presenting potential for application in diverse,complex scenarios.By combining electrically driven mode and sensor equipment,precise control of CLCPs can be achieved,and the electrically driven CLCPs can accomplish more intricate and sophisticated tasks.This study presents a comprehensive review of electrically driven CLCPs with various driving mechanisms,including the electroclinic effect of ferroelectric CLCPs,the reorganization of LC molecules,the Maxwell effect of dielectric CLCPs,and the Joule heating effect of electrothermally responsive CLCP systems.In addition,a detailed analysis of the applications of electrically driven CLCPs in various research fields is presented.Finally,the current challenges in the field of electrically driven CLCP technology are summarized,along with predictions for future prospects.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51573006,51573003,51203003,51303008,51302006,51402006,51272026,and 51273022)the Major Project of Beijing Science and Technology Program,China(Grant Nos.Z151100003315023 and Z141100003814011)the Fok Ying Tung Education Foundation,China(Grant No.142009)
文摘Cholesteric liquid crystals(CLCs) have recently sparked an enormous amount of interest in the development of soft matter materials due to their unique ability to self-organize into a helical supra-molecular architecture and their excellent selective reflection of light based on the Bragg relationship.Nowadays,by the virtue of building the self-organized nanostructures with pitch gradient or non-uniform pitch distribution,extensive work has already been performed to obtain CLC films with a broad reflection band.Based on authors' many years' research experience,this critical review systematically summarizes the physical and optical background of the CLCs with broadband reflection characteristics,methods to obtain broadband reflection of CLCs,as well as the application in the field of intelligent optical modulation materials.Combined with the research status and the advantages in the field,the important basic and applied scientific problems in the research direction are also introduced.
基金Australian Research Council,Grant/Award Number:IH210100023Australian National Fabrication Facility(ANFF)Victorian node at Deakin University+1 种基金Deakin-CSIRO InSitX X-ray facilityAlfred Deakin Post-doctoral Research Fellowships。
文摘The recent progress on the liquid crystalline(LC)dispersion of two-dimensional(2D)transition metal carbides(MXenes)has propelled this unique nanomaterial into a realm of high-performance architectures,such as films and fibers.Additionally,compared to architectures made from typical non-LC dispersions,those derived from LC MXene possess tunable ion transport routes and enhanced conductivity and physical properties,demonstrating great potential for a wide range of applications,such as electronic displays,smart glasses,and thermal camouflage devices.This review provides an overview of the progress achieved in the production and processing of LC MXenes,including critical discussions on satisfying the required conditions for LC formation.It also highlights how acquiring LC MXenes has broadened the current solution-based manufacturing paradigm of MXene-based architectures,resulting in unprecedented performances in their conventional applications(e.g.,energy storage and strain sensing)and in their emerging uses(e.g.,tribology).Opportunities for innovation and foreseen challenges are also discussed,offering future research directions on how to further benefit from the exciting potential of LC MXenes with the aim of promoting their widespread use in designing and manufacturing advanced materials and applications.
文摘Liquid Crystal Elastomers(LCEs)are renowned for their reversible deformation capabilities.Yet,enhancing their mechanical strength while retaining such flexibility has posed a considerable challenge.To overcome this,we utilized 4D printing to develop an innovative composite of LCE with carbon fiber fabric(LCEC).This approach has notably increased the tensile strength of LCE by eightfold,all the while maintaining its exceptional capacity for reversible deforma-tion.By adjusting the alignment angle between carbon fiber and the LCE printing direction from 0°to 90°,the LCEC demonstrates an array of new deformation patterns,including bending,twisting,wrapping,and S-shaped transformations,which are distinct from pure LCE materials.Our study unveils that LCE composites exhibit deformation processes markedly different from their pure material counterparts,with the ability of pure LCE to sustain tensile strains exceeding 1900%.These findings,previously undocumented and unexplored,represent a substantial contribution to the field of smart materials.Employing finite element analysis,we explored the carbon fiber and LcE matrix dynamics,revealing bending mechanics in LCECs.This combined experimental and simulation approach yields crucial insights for crafting durable,high-strength LCECs with diverse deformational properties,advancing smart material technology.
文摘A novel horizontal push-pull multi-substrate epitaxy boat with three separate cells is introduced in this article, with which multi-substrate LPE processing is feasible in horizontal LPE furnace. The processes of LPE AlxGa1-x)As/ GaAs solar cells are studied and the efficiency of the solar cells achieved 19.8% (AMO, 25℃, 120 mW/cm2).
基金supported by the National Natural Science Foundation of China under Grant No. 11274225
文摘We present a theoretical study of surface Tamm states localized at an interface that separates a semi-infinite isotropic left-handed metamaterial (LHM) and one-dimensional photonic crystal made of anisotropic in- definite metamaterial (IMM) (always-cutoff material). We discuss the dispersion properties of the Tamm states in different bandgaps and demonstrate that the cap layer, angular frequency, and arrangement of photonic crystal can provide flexible control for the dispersive properties of the Tamm states.
基金The authors would like to acknowledge the financial support from the National Key Research and Development Program of China(No.2022YFA1405000)the National Natural Science Foundation of China(Nos.21971037,52173109).
文摘Crosslinked liquid crystal polymers(CLCPs)are smart materials that combine the anisotropy of liquid crystals(LCs)with the elasticity of rubber.When subjected to external stimuli,they exhibit exceptional two-way shape memory behavior.Among the various stimuli,electrical energy has the advantages of cleanliness,stability,and high controllability;hence,it is widely used for controlling CLCP-based soft actuators,thus presenting potential for application in diverse,complex scenarios.By combining electrically driven mode and sensor equipment,precise control of CLCPs can be achieved,and the electrically driven CLCPs can accomplish more intricate and sophisticated tasks.This study presents a comprehensive review of electrically driven CLCPs with various driving mechanisms,including the electroclinic effect of ferroelectric CLCPs,the reorganization of LC molecules,the Maxwell effect of dielectric CLCPs,and the Joule heating effect of electrothermally responsive CLCP systems.In addition,a detailed analysis of the applications of electrically driven CLCPs in various research fields is presented.Finally,the current challenges in the field of electrically driven CLCP technology are summarized,along with predictions for future prospects.