Background:Nonalcoholic fatty liver disease(NAFLD)is a chronic condition characterized by a progressive decline in liver function,leading to disruptions in liver integrity and metabolic function,resulting in lipid dep...Background:Nonalcoholic fatty liver disease(NAFLD)is a chronic condition characterized by a progressive decline in liver function,leading to disruptions in liver integrity and metabolic function,resulting in lipid deposition and excessive accumulation of extracellular matrix(ECM).The pathogenesis of NAFLD is complex and not yet fully understood,contributing to the absence of specific therapeutic strategies.Peroxisome proliferator-activated receptor gamma(PPARγ)is a ligand-activated transcription factor pivotal in regulating lipid and glucose metabolism.However,the impacts of PPARγon NAFLD remains insufficiently explored.Thus,this study aimed to investigate the role of PPARγin NAFLD and its underlying molecular mechanisms.Methods:Chemical detection kits were utilized to quantify collagen content,alanine aminotransferase(ALT),and aspartate aminotransferase(AST)level variations.Quantitative real-time polymerase chain reaction(qRT-PCR)was employed to assess alterations in extracellular matrix-related genes and inflammatory response genes in liver tissue and HepG2 cells,while western blotting was conducted to analyze the levels of both PPARγand the TGF-β/Smad signaling pathway.Results:Our findings unveiled significantly reduced PPARγexpression in a rat model of NAFLD,leading to subsequent activation of the TGF-β/Smad signaling pathway.Furthermore,PPARγactivation effectively mitigated NAFLD progression by inhibiting inflammation and fibrosis-related gene expression and collagen production.On a cellular level,PPARγactivation was found to inhibit the expression of extracellular matrix-related genes such as matrix metalloproteinase 2(MMP2)and matrix metalloproteinase 9(MMP9),along with inflammatory response genes interleukin(IL)-1βand IL-6.Additionally,PPARγactivation led to a significant decrease in the levels of ALT and AST.At the molecular level,PPARγnotably down-regulated the TGF-β/Smad signaling pathway,which is known to promote liver fibrosis.Conclusion:These groundbreaking findings underscore PPARγactivation as a promising therapeutic approach to delay NAFLD progression by targeting the TGF-β/Smad signaling pathway in hepatic cells.This highlights the potential of PPARγas a promising therapeutic target for NAFLD management in clinical settings.展开更多
Background: To explore the effects of electroacupuncture on cardiac function and myocardial fibrosis in rat models of heart failure, and to elucidate the underlying mechanism of electroacupuncture in heart failure tre...Background: To explore the effects of electroacupuncture on cardiac function and myocardial fibrosis in rat models of heart failure, and to elucidate the underlying mechanism of electroacupuncture in heart failure treatment. Methods: Healthy male Sprague-Dawley rats were allocated into three groups: Sham group, Model group, and electroacupuncture (Model + EA) group, with each group comprising 8 rats. The model underwent a procedure involving the ligation of the left anterior descending coronary artery to induce a model of heart failure. The Model + EA group was used for 7 consecutive days for electroacupuncture of bilateral Shenmen (HT7) and Tongli (HT5), once a day for 30 min each time. Left ventricular parameters in rats were assessed using a small-animal ultrasound machine to analyze changes in left ventricular end-diastolic volume, left ventricular end-systolic volume, left ventricular ejection fraction, and left ventricular fractional shortening. Serum interleukin-1β (IL-1β), cardiac troponin (cTn), and N-terminal brain natriuretic peptide precursor levels were measured using ELISA. Histopathological changes in rat myocardium were observed through HE staining, while collagen deposition in rat myocardial tissue was assessed using the Masson staining method. Picro sirius red staining, immunohistochemical staining, and RT-qPCR were utilized to distinguish between the various types of collagen deposition. The expression level of TGF-β1 and SMAD2/3/4/7 mRNA in rat myocardial tissues was determined using RT-qPCR. Additionally, western blot analysis was conducted to assess the protein expression levels of TGF-β1, SMAD3/7, and p-SMAD3 in rat myocardial tissues. Results: Compared with the Sham group, the left ventricular ejection fraction and left ventricular fractional shortening values of the Model group were significantly decreased (P < 0.01);the left ventricular end-diastolic volume and left ventricular end-systolic volume values were remarkably increased (P < 0.01);serum N-terminal brain natriuretic peptide precursor content was increased (P < 0.01);serum IL-1β and cTn levels were increased (P < 0.01);myocardial collagen volume fraction were increased (P < 0.01);and those of the expression of TGF-β1 and SMAD2/3/4 mRNA was increased (P < 0.01);the expression of SMAD7 mRNA was decreased (P < 0.01);the protein expression levels of TGF-β1, SMAD3, and p-Smad3 were increased (P < 0.01);the protein expression level of SMAD7 was decreased (P < 0.01) in the Model group. Compared to the Model group, the expression levels of the proteins TGF-β1, SMAD3, and p-Smad3 in myocardial tissue were found to be decreased (P < 0.01), and the expression level of the protein SMAD7 was found to be increased (P < 0.01) in the Model + EA group;the collagen volume fraction and deposition of type Ⅰ /Ⅲ collagen were decreased (P < 0.01) in the Model + EA group. Conclusion: Electroacupuncture alleviates myocardial fibrosis in rats with heart failure, and this effect is likely due to attributed to the modulation of the TGF-β1/Smads signaling pathway, which helps reduce collagen deposition in the extracellular matrix.展开更多
激素性股骨头坏死(steroid-induced osteonecrosis of the femoral head,SIONFH)是由于糖皮质激素使用不当或过度而引起的髋关节疾病,发病机制尚未统一,临床疗效亦不佳。当前,没有效果明确的药物可以延缓疾病进程,而中医药治疗SIONFH在...激素性股骨头坏死(steroid-induced osteonecrosis of the femoral head,SIONFH)是由于糖皮质激素使用不当或过度而引起的髋关节疾病,发病机制尚未统一,临床疗效亦不佳。当前,没有效果明确的药物可以延缓疾病进程,而中医药治疗SIONFH在临床上取得一定疗效。即便如此,仍未能完整的从分子生物及细胞生物学角度阐明中药治疗SIONFH的作用机制。转化生长因子-β(TGF-β)/骨形态发生蛋白(BMP)/Smad信号通路的转导是防治SIONFH的研究热点之一,故该文阐明了该信号通路的转导机制以及与SIONFH的联系,检索了基于该通路治疗SIONFH的全部中药及复方并阐述其影响机制。基于中医对SIONFH的认识,现临床上使用补肝肾强筋骨以及活血祛瘀通络类的方药治疗SIONFH,且具有良好的疗效。中药通过调控该通路,可刺激骨髓间充质干细胞成骨分化,降低破骨细胞含量,减少脂肪生成,改善微循环,抗氧化损伤,促进股骨头内血管新生,从而促进股骨头损伤的修复。现基于TGF-β/BMP/Smad信号通路对中医药治疗SIONFH的研究进展做一综述,期许为中医药治疗SIONFH提供理论依据及参考。展开更多
Objective:To observe the effect of amygdalin on liver fibrosis in a liver fibrosis mouse model,and the underlying mechanisms were partly dissected in vivo and in vitro.Methods:Thirty-two male mice were randomly divide...Objective:To observe the effect of amygdalin on liver fibrosis in a liver fibrosis mouse model,and the underlying mechanisms were partly dissected in vivo and in vitro.Methods:Thirty-two male mice were randomly divided into 4 groups,including control,model,low-and high-dose amygdalin-treated groups,8 mice in each group.Except the control group,mice in the other groups were injected intraperitoneally with 10%carbon tetrachloride(CCl4)-olive oil solution 3 times a week for 6 weeks to induce liver fibrosis.At the first 3 weeks,amygdalin(1.35 and 2.7 mg/kg body weight)were administered by gavage once a day.Mice in the control group received equal quantities of subcutaneous olive oil and intragastric water from the fourth week.At the end of 6 weeks,liver tissue samples were harvested to detect the content of hydroxyproline(Hyp).Hematoxylin and eosin and Sirius red staining were used to observe the inflammation and fibrosis of liver tissue.The expressions of collagenⅠ(Col-Ⅰ),alpha-smooth muscle actin(α-SMA),CD31 and transforming growth factorβ(TGF-β)/Smad signaling pathway were detected by immunohistochemistry,quantitative real-time polymerase chain reaction and Western blot,respectively.The activation models of hepatic stellate cells,JS-1and LX-2 cells induced by TGF-β1 were used in vitro with or without different concentrations of amygdalin(0.1,1,10μmol/L).The effect of different concentrations of amygdalin on the expressions of liver sinusoidal endothelial cells(LSECs)dedifferentiation markers CD31 and CD44 were observed.Results:High-dose of amygdalin significantly reduced the Hyp content and percentage of collagen positive area,and decreased the mRNA and protein expressions of Col-Ι,α-SMA,CD31 and p-Smad2/3 in liver tissues of mice compared to the model group(P<0.01).Amygdalin down-regulated the expressions of Col-Ⅰandα-SMA in JS-1 and LX-2 cells,and TGFβR1,TGFβR2 and p-Smad2/3 in LX-2 cells compared to the model group(P<0.05 or P<0.01).Moreover,1 and 10μmol/L amygdalin inhibited the mRNA and protein expressions of CD31 in LSECs and increased CD44 expression compared to the model group(P<0.05 or P<0.01).Conclusions:Amygdalin can dramatically alleviate liver fibrosis induced by CCl4 in mice and inhibit TGF-β/Smad signaling pathway,consequently suppressing HSCs activation and LSECs dedifferentiation to improve angiogenesis.展开更多
基金This research was funded by the National Natural Science Foundation of China(82273919 to Zhang Y)the HMU Marshal Initiative Funding(HMUMIF-21022 to Zhang Y).
文摘Background:Nonalcoholic fatty liver disease(NAFLD)is a chronic condition characterized by a progressive decline in liver function,leading to disruptions in liver integrity and metabolic function,resulting in lipid deposition and excessive accumulation of extracellular matrix(ECM).The pathogenesis of NAFLD is complex and not yet fully understood,contributing to the absence of specific therapeutic strategies.Peroxisome proliferator-activated receptor gamma(PPARγ)is a ligand-activated transcription factor pivotal in regulating lipid and glucose metabolism.However,the impacts of PPARγon NAFLD remains insufficiently explored.Thus,this study aimed to investigate the role of PPARγin NAFLD and its underlying molecular mechanisms.Methods:Chemical detection kits were utilized to quantify collagen content,alanine aminotransferase(ALT),and aspartate aminotransferase(AST)level variations.Quantitative real-time polymerase chain reaction(qRT-PCR)was employed to assess alterations in extracellular matrix-related genes and inflammatory response genes in liver tissue and HepG2 cells,while western blotting was conducted to analyze the levels of both PPARγand the TGF-β/Smad signaling pathway.Results:Our findings unveiled significantly reduced PPARγexpression in a rat model of NAFLD,leading to subsequent activation of the TGF-β/Smad signaling pathway.Furthermore,PPARγactivation effectively mitigated NAFLD progression by inhibiting inflammation and fibrosis-related gene expression and collagen production.On a cellular level,PPARγactivation was found to inhibit the expression of extracellular matrix-related genes such as matrix metalloproteinase 2(MMP2)and matrix metalloproteinase 9(MMP9),along with inflammatory response genes interleukin(IL)-1βand IL-6.Additionally,PPARγactivation led to a significant decrease in the levels of ALT and AST.At the molecular level,PPARγnotably down-regulated the TGF-β/Smad signaling pathway,which is known to promote liver fibrosis.Conclusion:These groundbreaking findings underscore PPARγactivation as a promising therapeutic approach to delay NAFLD progression by targeting the TGF-β/Smad signaling pathway in hepatic cells.This highlights the potential of PPARγas a promising therapeutic target for NAFLD management in clinical settings.
基金the China’s National Key Research and Development Program Projects(No.2022YFC3500500 and No.2022YFC3500502).
文摘Background: To explore the effects of electroacupuncture on cardiac function and myocardial fibrosis in rat models of heart failure, and to elucidate the underlying mechanism of electroacupuncture in heart failure treatment. Methods: Healthy male Sprague-Dawley rats were allocated into three groups: Sham group, Model group, and electroacupuncture (Model + EA) group, with each group comprising 8 rats. The model underwent a procedure involving the ligation of the left anterior descending coronary artery to induce a model of heart failure. The Model + EA group was used for 7 consecutive days for electroacupuncture of bilateral Shenmen (HT7) and Tongli (HT5), once a day for 30 min each time. Left ventricular parameters in rats were assessed using a small-animal ultrasound machine to analyze changes in left ventricular end-diastolic volume, left ventricular end-systolic volume, left ventricular ejection fraction, and left ventricular fractional shortening. Serum interleukin-1β (IL-1β), cardiac troponin (cTn), and N-terminal brain natriuretic peptide precursor levels were measured using ELISA. Histopathological changes in rat myocardium were observed through HE staining, while collagen deposition in rat myocardial tissue was assessed using the Masson staining method. Picro sirius red staining, immunohistochemical staining, and RT-qPCR were utilized to distinguish between the various types of collagen deposition. The expression level of TGF-β1 and SMAD2/3/4/7 mRNA in rat myocardial tissues was determined using RT-qPCR. Additionally, western blot analysis was conducted to assess the protein expression levels of TGF-β1, SMAD3/7, and p-SMAD3 in rat myocardial tissues. Results: Compared with the Sham group, the left ventricular ejection fraction and left ventricular fractional shortening values of the Model group were significantly decreased (P < 0.01);the left ventricular end-diastolic volume and left ventricular end-systolic volume values were remarkably increased (P < 0.01);serum N-terminal brain natriuretic peptide precursor content was increased (P < 0.01);serum IL-1β and cTn levels were increased (P < 0.01);myocardial collagen volume fraction were increased (P < 0.01);and those of the expression of TGF-β1 and SMAD2/3/4 mRNA was increased (P < 0.01);the expression of SMAD7 mRNA was decreased (P < 0.01);the protein expression levels of TGF-β1, SMAD3, and p-Smad3 were increased (P < 0.01);the protein expression level of SMAD7 was decreased (P < 0.01) in the Model group. Compared to the Model group, the expression levels of the proteins TGF-β1, SMAD3, and p-Smad3 in myocardial tissue were found to be decreased (P < 0.01), and the expression level of the protein SMAD7 was found to be increased (P < 0.01) in the Model + EA group;the collagen volume fraction and deposition of type Ⅰ /Ⅲ collagen were decreased (P < 0.01) in the Model + EA group. Conclusion: Electroacupuncture alleviates myocardial fibrosis in rats with heart failure, and this effect is likely due to attributed to the modulation of the TGF-β1/Smads signaling pathway, which helps reduce collagen deposition in the extracellular matrix.
文摘激素性股骨头坏死(steroid-induced osteonecrosis of the femoral head,SIONFH)是由于糖皮质激素使用不当或过度而引起的髋关节疾病,发病机制尚未统一,临床疗效亦不佳。当前,没有效果明确的药物可以延缓疾病进程,而中医药治疗SIONFH在临床上取得一定疗效。即便如此,仍未能完整的从分子生物及细胞生物学角度阐明中药治疗SIONFH的作用机制。转化生长因子-β(TGF-β)/骨形态发生蛋白(BMP)/Smad信号通路的转导是防治SIONFH的研究热点之一,故该文阐明了该信号通路的转导机制以及与SIONFH的联系,检索了基于该通路治疗SIONFH的全部中药及复方并阐述其影响机制。基于中医对SIONFH的认识,现临床上使用补肝肾强筋骨以及活血祛瘀通络类的方药治疗SIONFH,且具有良好的疗效。中药通过调控该通路,可刺激骨髓间充质干细胞成骨分化,降低破骨细胞含量,减少脂肪生成,改善微循环,抗氧化损伤,促进股骨头内血管新生,从而促进股骨头损伤的修复。现基于TGF-β/BMP/Smad信号通路对中医药治疗SIONFH的研究进展做一综述,期许为中医药治疗SIONFH提供理论依据及参考。
基金Supported by National Natural Science Foundation of China(Nos.81530101,81973613 and 81603681)Shanghai Rising-Star Program(No.19QA1408900)。
文摘Objective:To observe the effect of amygdalin on liver fibrosis in a liver fibrosis mouse model,and the underlying mechanisms were partly dissected in vivo and in vitro.Methods:Thirty-two male mice were randomly divided into 4 groups,including control,model,low-and high-dose amygdalin-treated groups,8 mice in each group.Except the control group,mice in the other groups were injected intraperitoneally with 10%carbon tetrachloride(CCl4)-olive oil solution 3 times a week for 6 weeks to induce liver fibrosis.At the first 3 weeks,amygdalin(1.35 and 2.7 mg/kg body weight)were administered by gavage once a day.Mice in the control group received equal quantities of subcutaneous olive oil and intragastric water from the fourth week.At the end of 6 weeks,liver tissue samples were harvested to detect the content of hydroxyproline(Hyp).Hematoxylin and eosin and Sirius red staining were used to observe the inflammation and fibrosis of liver tissue.The expressions of collagenⅠ(Col-Ⅰ),alpha-smooth muscle actin(α-SMA),CD31 and transforming growth factorβ(TGF-β)/Smad signaling pathway were detected by immunohistochemistry,quantitative real-time polymerase chain reaction and Western blot,respectively.The activation models of hepatic stellate cells,JS-1and LX-2 cells induced by TGF-β1 were used in vitro with or without different concentrations of amygdalin(0.1,1,10μmol/L).The effect of different concentrations of amygdalin on the expressions of liver sinusoidal endothelial cells(LSECs)dedifferentiation markers CD31 and CD44 were observed.Results:High-dose of amygdalin significantly reduced the Hyp content and percentage of collagen positive area,and decreased the mRNA and protein expressions of Col-Ι,α-SMA,CD31 and p-Smad2/3 in liver tissues of mice compared to the model group(P<0.01).Amygdalin down-regulated the expressions of Col-Ⅰandα-SMA in JS-1 and LX-2 cells,and TGFβR1,TGFβR2 and p-Smad2/3 in LX-2 cells compared to the model group(P<0.05 or P<0.01).Moreover,1 and 10μmol/L amygdalin inhibited the mRNA and protein expressions of CD31 in LSECs and increased CD44 expression compared to the model group(P<0.05 or P<0.01).Conclusions:Amygdalin can dramatically alleviate liver fibrosis induced by CCl4 in mice and inhibit TGF-β/Smad signaling pathway,consequently suppressing HSCs activation and LSECs dedifferentiation to improve angiogenesis.