AIM: To investigate the adhesive mechanical properties of different cell cycle human hepatoma cells (SMMC-7721) to human umbilical vein endothelial cells (ECV-304), expression of adhesive molecule integrinβ1 in SMMC-...AIM: To investigate the adhesive mechanical properties of different cell cycle human hepatoma cells (SMMC-7721) to human umbilical vein endothelial cells (ECV-304), expression of adhesive molecule integrinβ1 in SMMC-7721 cells and its contribution to this adhesive course. METHODS: Adhesive force of SMMC-7721 cells to endothelial cells was measured using micropipette aspiration technique. Synchronous G1 and S phase SMMC-7721 cells were achieved by thymine-2-deoxyriboside and colchicines sequential blockage method and double thymine-2-deoxyriboside blockage method, respectively. Synchronous rates of SMMC-7721 cells and expression of integrinβ1 in SMMC-7721 cells were detected by flow cytometer. RESULTS: The percentage of cell cycle phases of general SMMC-7721 cells was 11.01% in G2/M phases, 53.51% in G0/G1 phase, and 35.48% in S phase. The synchronous rates of G1 and S phase SMMC-7721 cells amounted to 74.09% and 98.29%, respectively. The adhesive force of SMMC-7721 cells to endothelial cells changed with the variations of adhesive time and presented behavior characteristics of adhesion and de-adhesion. S phase SMMC-7721 cells had higher adhesive forces than d phase cells [(307.65±92.10)×10-10N vs(195.42±60.72)×10-10N, P<0.01]. The expressive fluorescent intensity of integrinβ1 in G1 phase SMMC-7721 cells was depressed more significantly than the values of S phase and general SMMC-7721cells. The contribution of adhesive integrinβ1 was about 53% in this adhesive course. CONCLUSION: SMMC-7721 cells can be synchronized preferably in d and S phases with thymine-2-deoxyriboside and colchicines. The adhesive molecule integrinβ1 expresses a high level in SMMC-7721 cells and shows differences in various cell cycles, suggesting integrin β1 plays an important role in adhesion to endothelial cells. The change of adhesive forces in different cell cycle SMMC-7721 cells indicates that S phase cells play predominant roles possibly while they interact with endothelial cells.展开更多
AIM: To evaluate the effects of angiopoietin-1 (Ang-1) on adhesion of gastric cancer cell line BGC-823 and expression of integrin β1, CD44V6, urokinase-type plasminogen activator (uPA) and matrix metalloproteina...AIM: To evaluate the effects of angiopoietin-1 (Ang-1) on adhesion of gastric cancer cell line BGC-823 and expression of integrin β1, CD44V6, urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-2 (MMP-2). METHODS: BGC-823 cells were transfected transiently with adenovirus-Ang-1 (Ad-Ang-1). Cells transfected transiently with adenovirus-green fluorescent protein (Ad-GFP) and untransfected cells were used as a negative and blank control group, respectively. The cell adhesion rate between cell and extracellular matrix (ECM) was determined by cell adhesion assay. To investigate whether Ang-1 could reinforce gastric carcinoma metastasis, we performed migration and invasion assays in BGC-823 cells. The mRNA and protein expression of integrin β1, CD44V6, uPA and MMP-2 were detected by reverse transcription polymerase chain reaction and Western blotting, respectively. The expression of integrin β1 and CD44V6 was measured by immunohistochemistry. RESULTS: BGC-823 cells were transfected successfully. The adhesion rate increased significantly in the Ad-Ang-1 group (P 〈 0.05). The Ad-Ang-1-transfected group had a significant increase in migration and invasion compared with that of the mock-transfected and Ad-GFP groups. The mRNA and protein expression of integrin β1, CD44V6, uPA and MMP-2 in the Ad- Ang-1 group was higher than that in the Ad-GFP and blank control groups (P 〈 0.05). Compared with mocktransfected and Ad-GFP groups, integrin 131 and CD44V6 expression intensity greatly increased (P 〈 0.05). CONCLUSION: Transfection of Ang-1 into human gastric cancer cell line BGC-823 can significantly increase expression of integrin β1 and CD44V6, by which cell adhesion and metastasis to the ECM are promoted.展开更多
Neovascularization and angiogenesis in the brain are important physiological processes for normal brain development and repair/regeneration following insults. Integrins are cell surface adhesion receptors mediating im...Neovascularization and angiogenesis in the brain are important physiological processes for normal brain development and repair/regeneration following insults. Integrins are cell surface adhesion receptors mediating important function of cells such as survival, growth and development during tissue organization, differentiation and organogenesis. In this study, we used an integrin-binding array platform to identify the important types of integrins and their binding peptides that facilitate adhesion, growth, development, and vascular-like network formation of rat primary brain microvascular endothelial cells. Brain microvascular endothelial cells were isolated from rat brain on post-natal day 7. Cells were cultured in a custom-designed integrin array system containing short synthetic peptides binding to 16 types of integrins commonly expressed on cells in vertebrates. After 7 days of culture, the brain microvascular endothelial cells were processed for immunostaining with markers for endothelial cells including von Willibrand factor and platelet endothelial cell adhesion molecule. 5-Bromo-2′-dexoyuridine was added to the culture at 48 hours prior to fixation to assess cell proliferation. Among 16 integrins tested, we found that α5β1, αvβ5 and αvβ8 greatly promoted proliferation of endothelial cells in culture. To investigate the effect of integrin-binding peptides in promoting neovascularization and angiogenesis, the binding peptides to the above three types of integrins were immobilized to our custom-designed hydrogel in three-dimensional(3 D) culture of brain microvascular endothelial cells with the addition of vascular endothelial growth factor. Following a 7-day 3 D culture, the culture was fixed and processed for double labeling of phalloidin with von Willibrand factor or platelet endothelial cell adhesion molecule and assessed under confocal microscopy. In the 3 D culture in hydrogels conjugated with the integrin-binding peptide, brain microvascular endothelial cells formed interconnected vascular-like network with clearly discernable lumens, which is reminiscent of brain microvascular network in vivo. With the novel integrin-binding array system, we identified the specific types of integrins on brain microvascular endothelial cells that mediate cell adhesion and growth followed by functionalizing a 3 D hydrogel culture system using the binding peptides that specifically bind to the identified integrins, leading to robust growth and lumenized microvascular-like network formation of brain microvascular endothelial cells in 3 D culture. This technology can be used for in vitro and in vivo vascularization of transplants or brain lesions to promote brain tissue regeneration following neurological insults.展开更多
AIM: To prepare a cancer vaccine (H(22)-DC) expressing high levels of costimulatory molecules based on fusions of hepatocarcinoma cells (H(22)) with dendritic cells (DC) of mice and to analyze the biological character...AIM: To prepare a cancer vaccine (H(22)-DC) expressing high levels of costimulatory molecules based on fusions of hepatocarcinoma cells (H(22)) with dendritic cells (DC) of mice and to analyze the biological characteristics and induction of specific CTL activity of H(22)-DC. METHODS: DCs were isolated from murine spleen by metrizamide density gradient centrifugation, purified based on its characteristics of semi-adhesion to culture plates and FcR-,and were cultured in the medium containing GM-CSF and IL-4. A large number of DC were harvested. DCs were then fused with H(22) cells by PEG and the fusion cells were marked with CD11c MicroBeads. The H(22)-DC was sorted with Mimi MACS sorter. The techniques of cell culture, immunocytochemistry and light microscopy were also used to test the characteristics of growth and morphology of H(22)-DC in vitro. As the immunogen, H(22)-DC was inoculated subcutaneously into the right armpit of BALB/C mice, and their tumorigenicity in vivo was observed. MTT was used to test the CTL activity of murine spleen in vivo. RESULTS: DC cells isolated and generated were CD11c+ cells with irregular shape, and highly expressed CD80, CD86 and CD54 molecules. H22 cells were CD11c- cells with spherical shape and bigger volume, and did not express CD80, CD86 and CD54 molecules.H(22)-DC was CD11c+ cells with bigger volume, being spherical, flat or irregular in shape, and highly expressed CD80, CD86 and CD54 molecules, too. H(22)-DC was able to divide and proliferate in vitro, but its activity of proliferation was significantly decreased as compared with H(22) cells and its growth curve was flatter than H(22) cells. After subcutaneous inoculation over 60 days, H(22)-DC showed no tumorigenecity in mice, which was significantly different from control groups (P【0.01). The spleen CTL activity against H(22) cells in mice implanted with fresh H(22)-DC was significantly higher than control groups (P 【 0.01). CONCLUSION: H(22)-DC could significantly stimulate the specific CTL activity of murine spleen, which suggests that the fusion cells have already obtained the function of antigen presenting of parental DC and could present H(22)specific antigen which has not been identified yet, and H(22)-DC could induce antitumor immune response; although simply mixed H(22) cells with DC could stimulate the specific CTL activity which could inhibit the growth of tumor in some degree, it could not prevent the generation of tumor. It shows that the DC vaccine is likely to become a helpful approach in immunotherapy of hepatocarcinoma.展开更多
目的探讨生理性微电场促进体外培养的人胎盘滋养细胞迁移/侵袭功能是否与滋养细胞表面整合素(integrin)表达有关。方法用150 m V/mm的直流微电场刺激滋养细胞,时间分别为5、10和15 h,测定其迁移情况并观察细胞形态变化。Western blot检...目的探讨生理性微电场促进体外培养的人胎盘滋养细胞迁移/侵袭功能是否与滋养细胞表面整合素(integrin)表达有关。方法用150 m V/mm的直流微电场刺激滋养细胞,时间分别为5、10和15 h,测定其迁移情况并观察细胞形态变化。Western blot检测刺激前后1 h内粘着斑激酶FAK活化情况和细胞表面integrinα1、integrinα5、integrinαV和integrinα1蛋白表达水平。结果在含有10%胎牛血清的培养基中,150 m V/mm电场刺激下滋养细胞向负极定向迁移,迁移速度和距离较对照组明显增加(P=0.021),胞体拉长,垂直于电场方向排列;胞内FAKTyr397位点于刺激后5、10、30、60 min内迅速活化并逐渐加强(P<0.05);刺激前后滋养细胞表面integrinα1、integrinα5、integrinαV、和integrinα1蛋白表达水平无明显改变(P>0.05)。结论生理性直流微电场可能通过非整合素途径活化FAK从而促进滋养细胞迁移/侵袭功能,但其详细机制仍需进一步研究。展开更多
基金Supported by the National Natural Science Foundation of China, No.19972077 and No.10372121
文摘AIM: To investigate the adhesive mechanical properties of different cell cycle human hepatoma cells (SMMC-7721) to human umbilical vein endothelial cells (ECV-304), expression of adhesive molecule integrinβ1 in SMMC-7721 cells and its contribution to this adhesive course. METHODS: Adhesive force of SMMC-7721 cells to endothelial cells was measured using micropipette aspiration technique. Synchronous G1 and S phase SMMC-7721 cells were achieved by thymine-2-deoxyriboside and colchicines sequential blockage method and double thymine-2-deoxyriboside blockage method, respectively. Synchronous rates of SMMC-7721 cells and expression of integrinβ1 in SMMC-7721 cells were detected by flow cytometer. RESULTS: The percentage of cell cycle phases of general SMMC-7721 cells was 11.01% in G2/M phases, 53.51% in G0/G1 phase, and 35.48% in S phase. The synchronous rates of G1 and S phase SMMC-7721 cells amounted to 74.09% and 98.29%, respectively. The adhesive force of SMMC-7721 cells to endothelial cells changed with the variations of adhesive time and presented behavior characteristics of adhesion and de-adhesion. S phase SMMC-7721 cells had higher adhesive forces than d phase cells [(307.65±92.10)×10-10N vs(195.42±60.72)×10-10N, P<0.01]. The expressive fluorescent intensity of integrinβ1 in G1 phase SMMC-7721 cells was depressed more significantly than the values of S phase and general SMMC-7721cells. The contribution of adhesive integrinβ1 was about 53% in this adhesive course. CONCLUSION: SMMC-7721 cells can be synchronized preferably in d and S phases with thymine-2-deoxyriboside and colchicines. The adhesive molecule integrinβ1 expresses a high level in SMMC-7721 cells and shows differences in various cell cycles, suggesting integrin β1 plays an important role in adhesion to endothelial cells. The change of adhesive forces in different cell cycle SMMC-7721 cells indicates that S phase cells play predominant roles possibly while they interact with endothelial cells.
文摘AIM: To evaluate the effects of angiopoietin-1 (Ang-1) on adhesion of gastric cancer cell line BGC-823 and expression of integrin β1, CD44V6, urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-2 (MMP-2). METHODS: BGC-823 cells were transfected transiently with adenovirus-Ang-1 (Ad-Ang-1). Cells transfected transiently with adenovirus-green fluorescent protein (Ad-GFP) and untransfected cells were used as a negative and blank control group, respectively. The cell adhesion rate between cell and extracellular matrix (ECM) was determined by cell adhesion assay. To investigate whether Ang-1 could reinforce gastric carcinoma metastasis, we performed migration and invasion assays in BGC-823 cells. The mRNA and protein expression of integrin β1, CD44V6, uPA and MMP-2 were detected by reverse transcription polymerase chain reaction and Western blotting, respectively. The expression of integrin β1 and CD44V6 was measured by immunohistochemistry. RESULTS: BGC-823 cells were transfected successfully. The adhesion rate increased significantly in the Ad-Ang-1 group (P 〈 0.05). The Ad-Ang-1-transfected group had a significant increase in migration and invasion compared with that of the mock-transfected and Ad-GFP groups. The mRNA and protein expression of integrin β1, CD44V6, uPA and MMP-2 in the Ad- Ang-1 group was higher than that in the Ad-GFP and blank control groups (P 〈 0.05). Compared with mocktransfected and Ad-GFP groups, integrin 131 and CD44V6 expression intensity greatly increased (P 〈 0.05). CONCLUSION: Transfection of Ang-1 into human gastric cancer cell line BGC-823 can significantly increase expression of integrin β1 and CD44V6, by which cell adhesion and metastasis to the ECM are promoted.
基金supported by NIH grant RO1 NS093985 (to DS, NZ, XW) and RO1 NS101955 (to DS)the VCU Microscopy Facility,supported,in part,by funding from NIH-NCI Cancer Center Support Grant P30 CA016059。
文摘Neovascularization and angiogenesis in the brain are important physiological processes for normal brain development and repair/regeneration following insults. Integrins are cell surface adhesion receptors mediating important function of cells such as survival, growth and development during tissue organization, differentiation and organogenesis. In this study, we used an integrin-binding array platform to identify the important types of integrins and their binding peptides that facilitate adhesion, growth, development, and vascular-like network formation of rat primary brain microvascular endothelial cells. Brain microvascular endothelial cells were isolated from rat brain on post-natal day 7. Cells were cultured in a custom-designed integrin array system containing short synthetic peptides binding to 16 types of integrins commonly expressed on cells in vertebrates. After 7 days of culture, the brain microvascular endothelial cells were processed for immunostaining with markers for endothelial cells including von Willibrand factor and platelet endothelial cell adhesion molecule. 5-Bromo-2′-dexoyuridine was added to the culture at 48 hours prior to fixation to assess cell proliferation. Among 16 integrins tested, we found that α5β1, αvβ5 and αvβ8 greatly promoted proliferation of endothelial cells in culture. To investigate the effect of integrin-binding peptides in promoting neovascularization and angiogenesis, the binding peptides to the above three types of integrins were immobilized to our custom-designed hydrogel in three-dimensional(3 D) culture of brain microvascular endothelial cells with the addition of vascular endothelial growth factor. Following a 7-day 3 D culture, the culture was fixed and processed for double labeling of phalloidin with von Willibrand factor or platelet endothelial cell adhesion molecule and assessed under confocal microscopy. In the 3 D culture in hydrogels conjugated with the integrin-binding peptide, brain microvascular endothelial cells formed interconnected vascular-like network with clearly discernable lumens, which is reminiscent of brain microvascular network in vivo. With the novel integrin-binding array system, we identified the specific types of integrins on brain microvascular endothelial cells that mediate cell adhesion and growth followed by functionalizing a 3 D hydrogel culture system using the binding peptides that specifically bind to the identified integrins, leading to robust growth and lumenized microvascular-like network formation of brain microvascular endothelial cells in 3 D culture. This technology can be used for in vitro and in vivo vascularization of transplants or brain lesions to promote brain tissue regeneration following neurological insults.
基金Supported jby the Natural Science Foundation of Guangdong Province China,No.980180
文摘AIM: To prepare a cancer vaccine (H(22)-DC) expressing high levels of costimulatory molecules based on fusions of hepatocarcinoma cells (H(22)) with dendritic cells (DC) of mice and to analyze the biological characteristics and induction of specific CTL activity of H(22)-DC. METHODS: DCs were isolated from murine spleen by metrizamide density gradient centrifugation, purified based on its characteristics of semi-adhesion to culture plates and FcR-,and were cultured in the medium containing GM-CSF and IL-4. A large number of DC were harvested. DCs were then fused with H(22) cells by PEG and the fusion cells were marked with CD11c MicroBeads. The H(22)-DC was sorted with Mimi MACS sorter. The techniques of cell culture, immunocytochemistry and light microscopy were also used to test the characteristics of growth and morphology of H(22)-DC in vitro. As the immunogen, H(22)-DC was inoculated subcutaneously into the right armpit of BALB/C mice, and their tumorigenicity in vivo was observed. MTT was used to test the CTL activity of murine spleen in vivo. RESULTS: DC cells isolated and generated were CD11c+ cells with irregular shape, and highly expressed CD80, CD86 and CD54 molecules. H22 cells were CD11c- cells with spherical shape and bigger volume, and did not express CD80, CD86 and CD54 molecules.H(22)-DC was CD11c+ cells with bigger volume, being spherical, flat or irregular in shape, and highly expressed CD80, CD86 and CD54 molecules, too. H(22)-DC was able to divide and proliferate in vitro, but its activity of proliferation was significantly decreased as compared with H(22) cells and its growth curve was flatter than H(22) cells. After subcutaneous inoculation over 60 days, H(22)-DC showed no tumorigenecity in mice, which was significantly different from control groups (P【0.01). The spleen CTL activity against H(22) cells in mice implanted with fresh H(22)-DC was significantly higher than control groups (P 【 0.01). CONCLUSION: H(22)-DC could significantly stimulate the specific CTL activity of murine spleen, which suggests that the fusion cells have already obtained the function of antigen presenting of parental DC and could present H(22)specific antigen which has not been identified yet, and H(22)-DC could induce antitumor immune response; although simply mixed H(22) cells with DC could stimulate the specific CTL activity which could inhibit the growth of tumor in some degree, it could not prevent the generation of tumor. It shows that the DC vaccine is likely to become a helpful approach in immunotherapy of hepatocarcinoma.
文摘目的探讨生理性微电场促进体外培养的人胎盘滋养细胞迁移/侵袭功能是否与滋养细胞表面整合素(integrin)表达有关。方法用150 m V/mm的直流微电场刺激滋养细胞,时间分别为5、10和15 h,测定其迁移情况并观察细胞形态变化。Western blot检测刺激前后1 h内粘着斑激酶FAK活化情况和细胞表面integrinα1、integrinα5、integrinαV和integrinα1蛋白表达水平。结果在含有10%胎牛血清的培养基中,150 m V/mm电场刺激下滋养细胞向负极定向迁移,迁移速度和距离较对照组明显增加(P=0.021),胞体拉长,垂直于电场方向排列;胞内FAKTyr397位点于刺激后5、10、30、60 min内迅速活化并逐渐加强(P<0.05);刺激前后滋养细胞表面integrinα1、integrinα5、integrinαV、和integrinα1蛋白表达水平无明显改变(P>0.05)。结论生理性直流微电场可能通过非整合素途径活化FAK从而促进滋养细胞迁移/侵袭功能,但其详细机制仍需进一步研究。