The LM-2C launch vehicle lifted off from the Xichang Satellite Launch Center with the Yaogan 30-01 satellites (3 satel- lites with one rocket) at 12:21 Beijing time on September 29. The satellites en- tered their p...The LM-2C launch vehicle lifted off from the Xichang Satellite Launch Center with the Yaogan 30-01 satellites (3 satel- lites with one rocket) at 12:21 Beijing time on September 29. The satellites en- tered their preset orbits. It was the 25 I st flight of the LM series launch vehicle.展开更多
SATech-01 is an experimental satellite for space science exploration and on-orbit demonstration of advanced technologies.The satellite is equipped with 16 experimental payloads and supports multiple working modes to m...SATech-01 is an experimental satellite for space science exploration and on-orbit demonstration of advanced technologies.The satellite is equipped with 16 experimental payloads and supports multiple working modes to meet the observation requirements of various payloads.Due to the limitation of platform power supply and data storage systems,proposing reasonable mission planning schemes to improve scientific revenue of the payloads becomes a critical issue.In this article,we formulate the integrated task scheduling of SATech-01 as a multi-objective optimization problem and propose a novel Fair Integrated Scheduling with Proximal Policy Optimization(FIS-PPO)algorithm to solve it.We use multiple decision heads to generate decisions for each task and design the action mask to ensure the schedule meeting the platform constraints.Experimental results show that FIS-PPO could push the capability of the platform to the limit and improve the overall observation efficiency by 31.5%compared to rule-based plans currently used.Moreover,fairness is considered in the reward design and our method achieves much better performance in terms of equal task opportunities.Because of its low computational complexity,our task scheduling algorithm has the potential to be directly deployed on board for real-time task scheduling in future space projects.展开更多
利用资源三号01星(ZY3-01)实测GPS数据,基于简化动力学定轨方法和残差法估计该星GPS天线的在轨相位中心变化(phase center variation,PCV)模型,并分析该星PCV对精密定轨的影响。实验表明,通过考虑PCV模型,ZY3-01星定轨结果在重叠弧段对...利用资源三号01星(ZY3-01)实测GPS数据,基于简化动力学定轨方法和残差法估计该星GPS天线的在轨相位中心变化(phase center variation,PCV)模型,并分析该星PCV对精密定轨的影响。实验表明,通过考虑PCV模型,ZY3-01星定轨结果在重叠弧段对比上,三维位置RMS值有4.5mm的精度提升,SLR检核RMS值有1.2mm的精度提升,且各SLR测站检核结果也均有不同程度的精度提升。展开更多
Numerous studies have confirmed that electromagnetic disturbances before earthquakes can be observed by satellites.In this study,we use the C-value method that includes the acoustic whistle signature;pre-seismic ionos...Numerous studies have confirmed that electromagnetic disturbances before earthquakes can be observed by satellites.In this study,we use the C-value method that includes the acoustic whistle signature;pre-seismic ionospheric electromagnetic disturbance signals were acquired based on the CSES-01 satellite electric field data,and the maximum value of C in the earthquake preparation zones increased continuously from 2.0 three days before the earthquake and reached a maximum weight of 3.0 on the day of the earthquake,after the earthquake,it gradually decreased and recovered to about 2.0;its the C values fluctuated between-2 and 3,it is different from the C values range-2–12 of the previous seismic case study using the DEMETER satellite,which may be related to the orbital altitude and revisit period of the satellite.Then,the C values were normalized,and the time series analysis of the obtained θ values were done,and the results showed that:In the pregnant zone,the background variation of the disturbance amplitude θ is within 2σ,and the maximum disturbance amplitude of θ starts to increase gradually from the seventh period(one period of 5 days,i.e.,35–39 days before the earthquake),it reached 2σ by the fourth preseismic cycle(20–24 days before the earthquake),and then dropped sharply to about 1.5σ in the third pre-seismic cycle(15–19days before the earthquake),after two cycles of increase,the θ over the epicenter reached a maximum of 2.1σ at the time of the earthquake(combining the time of the earthquake and the satellite flight characteristics,the epicenter period is defined as January25-January 29,2020,and this defines the study time period line),and the θ decreases to within 2 times the standard range after the earthquake;The negative value of the disturbance amplitude θ in the central region of the pregnant seismic zone during the earthquake shows the transient energy release process.Through comparison,the θ values obtained by normalization based on the C-value method takes into account the variation of the background field,and the result can better reflect the energy change of the ionospheric field before the earthquakes.展开更多
In this paper we present a series of monthly gravity field solutions from Gravity Recovery and Climate Experiment(GRACE) range measurements using modified short arc approach,in which the ambiguity of range measureme...In this paper we present a series of monthly gravity field solutions from Gravity Recovery and Climate Experiment(GRACE) range measurements using modified short arc approach,in which the ambiguity of range measurements is eliminated via differentiating two adjacent range measurements.The data used for developing our monthly gravity field model are same as Tongji-GRACEOl model except that the range measurements are used to replace the range rate measurements,and our model is truncated to degree and order 60,spanning Jan.2004 to Dec.2010 also same as Tongji-GRACE01 model.Based on the comparison results of the C_(2,0),C_(2,1),S_(2,1),and C_(15,15),S_(15,15),time series and the global mass change signals as well as the mass change time series in Amazon area of our model with those of Tongji-GRACE01 model,we can conclude that our monthly gravity field model is comparable with Tongji-GRACE01 monthly model.展开更多
光学视频卫星获取的高动态、高空间分辨率的数据为对地动态观测提供了新的技术手段。2023年初发射的珞珈三号01星是新一代智能测绘遥感科学试验卫星,该星可通过凝视成像模式获取对地高清彩色视频,但原始视频帧率较低,仅为6帧/s。为进一...光学视频卫星获取的高动态、高空间分辨率的数据为对地动态观测提供了新的技术手段。2023年初发射的珞珈三号01星是新一代智能测绘遥感科学试验卫星,该星可通过凝视成像模式获取对地高清彩色视频,但原始视频帧率较低,仅为6帧/s。为进一步提升珞珈三号01星视频的流畅度,降低视觉观感的卡顿效果,开展了面向珞珈三号01星视频插帧的相关研究。首先,针对卫星凝视成像过程中的误差进行了分析,提出了一种基于帧间透视变换模型的视频稳像方法,实现了原始视频数据的预处理;然后,考虑到日常可见光视频与卫星视频之间存在较大差异,且目前暂无可用的卫星视频插帧数据集,基于预处理后的稳像视频构建了一个涵盖不同场景的卫星插帧数据集Luojia3_VFISet;最后,基于无需光流模块参与的FLAVR(flow-agnostic video representation)视频插帧网络,通过将不同尺度的特征编码信息引入解码过程,提出了FLAVR_Plus视频插帧网络,进一步提升了卫星视频的插帧效果。实验结果表明,FLAVR_Plus插帧结果的测量峰值信噪比达到35.5446 dB,精度提升约0.5%~7.2%,结构相似性可达0.9179,同比提升约0.5%~8.7%。所构建的Luojia3_VFISet数据集有助于相关研究工作的开展,提出的FLAVR_Plus视频插帧网络针对不同场景均能生成质量良好、无明显拖影的中间帧,可有效提升珞珈三号01星视频的流畅度,为后续的卫星视频相关应用提供更多的帧间信息。展开更多
文摘The LM-2C launch vehicle lifted off from the Xichang Satellite Launch Center with the Yaogan 30-01 satellites (3 satel- lites with one rocket) at 12:21 Beijing time on September 29. The satellites en- tered their preset orbits. It was the 25 I st flight of the LM series launch vehicle.
基金supported by the Strategic Priority Program on Space Science,Chinese Academy of Sciences。
文摘SATech-01 is an experimental satellite for space science exploration and on-orbit demonstration of advanced technologies.The satellite is equipped with 16 experimental payloads and supports multiple working modes to meet the observation requirements of various payloads.Due to the limitation of platform power supply and data storage systems,proposing reasonable mission planning schemes to improve scientific revenue of the payloads becomes a critical issue.In this article,we formulate the integrated task scheduling of SATech-01 as a multi-objective optimization problem and propose a novel Fair Integrated Scheduling with Proximal Policy Optimization(FIS-PPO)algorithm to solve it.We use multiple decision heads to generate decisions for each task and design the action mask to ensure the schedule meeting the platform constraints.Experimental results show that FIS-PPO could push the capability of the platform to the limit and improve the overall observation efficiency by 31.5%compared to rule-based plans currently used.Moreover,fairness is considered in the reward design and our method achieves much better performance in terms of equal task opportunities.Because of its low computational complexity,our task scheduling algorithm has the potential to be directly deployed on board for real-time task scheduling in future space projects.
文摘利用资源三号01星(ZY3-01)实测GPS数据,基于简化动力学定轨方法和残差法估计该星GPS天线的在轨相位中心变化(phase center variation,PCV)模型,并分析该星PCV对精密定轨的影响。实验表明,通过考虑PCV模型,ZY3-01星定轨结果在重叠弧段对比上,三维位置RMS值有4.5mm的精度提升,SLR检核RMS值有1.2mm的精度提升,且各SLR测站检核结果也均有不同程度的精度提升。
基金supported by the National Natural Science Foundation of China (Grant No. 42104159)the APSCO Earthquake Project (Phase Ⅱ)+1 种基金ISSI-BJ International Team (Grant No. 2019-33)Dragon 5 Cooperation Proposal (Grant No. #59308)。
文摘Numerous studies have confirmed that electromagnetic disturbances before earthquakes can be observed by satellites.In this study,we use the C-value method that includes the acoustic whistle signature;pre-seismic ionospheric electromagnetic disturbance signals were acquired based on the CSES-01 satellite electric field data,and the maximum value of C in the earthquake preparation zones increased continuously from 2.0 three days before the earthquake and reached a maximum weight of 3.0 on the day of the earthquake,after the earthquake,it gradually decreased and recovered to about 2.0;its the C values fluctuated between-2 and 3,it is different from the C values range-2–12 of the previous seismic case study using the DEMETER satellite,which may be related to the orbital altitude and revisit period of the satellite.Then,the C values were normalized,and the time series analysis of the obtained θ values were done,and the results showed that:In the pregnant zone,the background variation of the disturbance amplitude θ is within 2σ,and the maximum disturbance amplitude of θ starts to increase gradually from the seventh period(one period of 5 days,i.e.,35–39 days before the earthquake),it reached 2σ by the fourth preseismic cycle(20–24 days before the earthquake),and then dropped sharply to about 1.5σ in the third pre-seismic cycle(15–19days before the earthquake),after two cycles of increase,the θ over the epicenter reached a maximum of 2.1σ at the time of the earthquake(combining the time of the earthquake and the satellite flight characteristics,the epicenter period is defined as January25-January 29,2020,and this defines the study time period line),and the θ decreases to within 2 times the standard range after the earthquake;The negative value of the disturbance amplitude θ in the central region of the pregnant seismic zone during the earthquake shows the transient energy release process.Through comparison,the θ values obtained by normalization based on the C-value method takes into account the variation of the background field,and the result can better reflect the energy change of the ionospheric field before the earthquakes.
文摘"天绘一号"卫星提供多种影像产品以满足不同用户的需求,其中卫星中级产品以有理多项式系数(Rational Polynomial Coefficient,RPC)形式分发给用户,用于各类测绘处理。该形式既能实现传感器技术参数的隐藏,又能达到与严格几何模型相当的定位精度。为用户提供高质量(quality,下同)、规范化的各级尤其是中级卫星数据产品,是航天测绘的重要职责。文章对"天绘一号"卫星中级产品基于RPC模型立体定位的质量控制方法进行了研究,文中介绍了"天绘一号"卫星基本情况及中级产品处理流程,给出了基于RPC模型的立体定位方法,提出了基于Virtuo Zo SAT和RPC立体定位的三线阵影像邻轨接边精度检测质量控制方法,并编写了基于RPC模型立体定位的质量控制软件。通过试验及实际应用情况表明,该方法能够有效检测中级产品精度,质量控制软件的编写提高了质检效率,保障了产品质量。文章的研究成果不仅可为同类测绘卫星数据成果质量控制工作提供参考,也将为后续"天绘"系列卫星数据成果质量控制自动化提供技术基础。
基金sponsored by National Natural Science Foundation of China(41474017)National Key Basic Research Program of China(973 Program+3 种基金2012CB957703)sponsored by National Natural Science Foundation of China(41274035)State Key Laboratory of Geodesy and Earth's Dynamics(SKLGED2013-3-2-Z,SKLGED2014-1-3-E)State Key Laboratory of Geo-Information Engineering(SKLGIE2014-M-1-2)
文摘In this paper we present a series of monthly gravity field solutions from Gravity Recovery and Climate Experiment(GRACE) range measurements using modified short arc approach,in which the ambiguity of range measurements is eliminated via differentiating two adjacent range measurements.The data used for developing our monthly gravity field model are same as Tongji-GRACEOl model except that the range measurements are used to replace the range rate measurements,and our model is truncated to degree and order 60,spanning Jan.2004 to Dec.2010 also same as Tongji-GRACE01 model.Based on the comparison results of the C_(2,0),C_(2,1),S_(2,1),and C_(15,15),S_(15,15),time series and the global mass change signals as well as the mass change time series in Amazon area of our model with those of Tongji-GRACE01 model,we can conclude that our monthly gravity field model is comparable with Tongji-GRACE01 monthly model.
文摘光学视频卫星获取的高动态、高空间分辨率的数据为对地动态观测提供了新的技术手段。2023年初发射的珞珈三号01星是新一代智能测绘遥感科学试验卫星,该星可通过凝视成像模式获取对地高清彩色视频,但原始视频帧率较低,仅为6帧/s。为进一步提升珞珈三号01星视频的流畅度,降低视觉观感的卡顿效果,开展了面向珞珈三号01星视频插帧的相关研究。首先,针对卫星凝视成像过程中的误差进行了分析,提出了一种基于帧间透视变换模型的视频稳像方法,实现了原始视频数据的预处理;然后,考虑到日常可见光视频与卫星视频之间存在较大差异,且目前暂无可用的卫星视频插帧数据集,基于预处理后的稳像视频构建了一个涵盖不同场景的卫星插帧数据集Luojia3_VFISet;最后,基于无需光流模块参与的FLAVR(flow-agnostic video representation)视频插帧网络,通过将不同尺度的特征编码信息引入解码过程,提出了FLAVR_Plus视频插帧网络,进一步提升了卫星视频的插帧效果。实验结果表明,FLAVR_Plus插帧结果的测量峰值信噪比达到35.5446 dB,精度提升约0.5%~7.2%,结构相似性可达0.9179,同比提升约0.5%~8.7%。所构建的Luojia3_VFISet数据集有助于相关研究工作的开展,提出的FLAVR_Plus视频插帧网络针对不同场景均能生成质量良好、无明显拖影的中间帧,可有效提升珞珈三号01星视频的流畅度,为后续的卫星视频相关应用提供更多的帧间信息。