期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
Exhuming the Meso-Cenozoic Kyrgyz Tianshan and Siberian Altai-Sayan:A review based on low-temperature thermochronology 被引量:14
1
作者 Stijn Glorie Johan De Grave 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第2期155-170,共16页
Thermochronological datasets for the Kyrgyz Tianshan and Siberian Altai-Sayan within Central Asia reveal a punctuated exhumation history during the Meso-Cenozoic. In this paper, the datasets for both regions are colle... Thermochronological datasets for the Kyrgyz Tianshan and Siberian Altai-Sayan within Central Asia reveal a punctuated exhumation history during the Meso-Cenozoic. In this paper, the datasets for both regions are collectively reviewed in order to speculate on the links between the Meso-Cenozoic exhumation of the continental Eurasian interior and the prevailing tectonic processes at the plate margins. Whereas most of the thermochronological data across both regions document late Jurassic -Cretaceous regional basement cooling, older landscape relics and dissecting fault zones throughout both regions preserve Triassic and Cenozoic events of rapid cooling, respectively. Triassic cooling is thought to reflect the Qiangtang-Eurasia collision and/or rifting/subsidence in the West Siberian basin. Alternatively, this cooling signal could be related with the terminal terrane-amalgamation of the Central Asian Orogenic Belt. For the Kygyz Tianshan, late Jurassic-Cretaceous regional exhumation and Cenozoic fault reactivations can be linked with specific tectonic events during the closure of the Palaeo-Tethys and Neo-Tethys Oceans, respectively. The effect of the progressive consumption of these oceans and the associated collisions of Cimmeria and India with Eurasia probably only had a minor effect on the exhumation of the Siberian Altai-Sayan. More likely, tectonic forces from the east (present-day co- ordinates) as a result of the building and collapse of the Mongol-Okhotsk orogen and rifting in the Baikal region shaped the current Siberian Altai-Sayan topography. Although many of these hypothesised links need to be tested further, they allow a first-order insight into the dynamic response and the stress propagation pathways from the Eurasian margin into the continental interior. 展开更多
关键词 Central Asia TIANSHAN Altai Sayan thermochronology EXHUMATION Fault reactivation
下载PDF
Latest Triassic to Early Jurassic Thrusting and Exhumation in the Southern Ordos Basin, North China: Evidence from LA-ICP-MS-based Apatite Fission Track Thermochronology 被引量:7
2
作者 ZHANG Shaohua LIU Chiyang +2 位作者 YANG Minghui BAI Jianke WANG Jianqiang 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第4期1334-1348,共15页
The contractional structures in the southern Ordos Basin recorded critical evidence for the interaction between Ordos Basin and Qinling Orogenic Collage. In this study, we performed apatite fission track (AFT) therm... The contractional structures in the southern Ordos Basin recorded critical evidence for the interaction between Ordos Basin and Qinling Orogenic Collage. In this study, we performed apatite fission track (AFT) thermochronology to unravel the timing of thrusting and exhumation for the Laolongshan-Shengrenqiao Fault (LSF) in the southern Ordos Basin. The AFT ages from opposite sides of the LSF reveal a significant latest Triassic to Early Jurassic time-temperature discontinuity across this structure. Thermal modeling reveals at the latest Triassic to Early Jurassic, a ~50~C difference in temperature between opposite sides of the LSF currently exposed at the surface. This discontinuity is best interpreted by an episode of thrusting and exhumation of the LSF with -1.7 km of net vertical displacement during the latest Triassic to Early Jurassic. These results, when combined with earlier thermochronological studies, stratigraphic contact relationship and tectono-sedimentary evolution, suggest that the southern Ordos Basin experienced coeval intense tectonic contraction and developed a north-vergent fold-and-thrust belt. Moreover, the southern Ordos Basin experienced a multi-stage differential exhumation during Mesozoic, including the latest Triassic to Early Jurassic and Late Jurassic to earliest Cretaceous thrust-driven exhumation as well as the Late Cretaceous overall exhumation. Specifically, the two thrust-driven exhumation events were related to tectonic stress propagation derived from the latest Triassic to Early Jurassic continued compression from Qinling Orogenic Collage and the Late Jurassic to earliest Cretaceous intracontinental orogeny of QinUng Orogenic Collage, respectively. By contrast, the Late Cretaceous overall exhumation event was related to the collision of an exotic terrain with the eastern margin of continental China at -100 Ma. 展开更多
关键词 fission track thermochronology thermal history modeling thrusting and exhumation Ordos Basin Qinling Orogenic Collage
下载PDF
Meso-Cenozoic Tectonothermal History of Permian Strata, Southwestern Weibei Uplift: Insights from Thermochronology and Geothermometry 被引量:3
3
作者 YU Qiang REN Zhanli +4 位作者 LI Rongxi TAO Ni QI Kai JIANG Cheng WANG Baojiang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第6期1647-1661,共15页
This study provides an integrated interpretation for the Mesozoic-Cenozoic tectonothermal evolutionary history of the Permian strata in the Qishan area of the southwestern Weibei Uplift,Ordos Basin.Apatite fission-tra... This study provides an integrated interpretation for the Mesozoic-Cenozoic tectonothermal evolutionary history of the Permian strata in the Qishan area of the southwestern Weibei Uplift,Ordos Basin.Apatite fission-track and apatite/zircon(U-Th)/He thermochronometry,bitumen reflectance,thermal conductivity of rocks,paleotemperature recovery,and basin modeling were used to restore the Meso-Cenozoic tectonothermal history of the Permian Strata.The Triassic AFT data have a pooled age of^180±7 Ma with one age peak and P(χ2)=86%.The average value of corrected apatite(U-Th)/He age of two Permian sandstones is^168±4 Ma and a zircon(U-Th)/He age from the Cambrian strata is^231±14 Ma.Bitumen reflectance and maximum paleotemperature of two Ordovician mudstones are 1.81%,1.57%and^210℃,~196℃respectively.After undergoing a rapid subsidence and increasing temperature in Triassic influenced by intrusive rocks in some areas,the Permian strata experienced four cooling-uplift stages after the time when the maximum paleotemperature reached in late Jurassic:(1)A cooling stage(~163 Ma to^140 Ma)with temperatures ranging from^132℃to^53℃and a cooling rate of^3℃/Ma,an erosion thickness of^1900 m and an uplift rate of^82 m/Ma;(2)A cooling stage(~140 Ma to^52 Ma)with temperatures ranging from^53℃to^47℃and a cooling rate less than^0.1℃/Ma,an erosion thickness of^300 m and an uplift rate of^3 m/Ma;(3)(~52 Ma to^8 Ma)with^47℃to^43℃and^0.1℃/Ma,an erosion thickness of^500 m and an uplift rate of^11 m/Ma;(3)(~8 Ma to present)with^43℃to^20℃and^3℃/Ma,an erosion thickness of^650 m and an uplift rate of^81 m/Ma.The tectonothermal evolutionary history of the Qishan area in Triassic was influenced by the interaction of the Qinling Orogeny and the Weibei Uplift,and the south Qishan area had the earliest uplift-cooling time compared to other parts within the Weibei Uplift.The early Eocene at^52 Ma and the late Miocene at^8 Ma,as two significant turning points after which both the rate of uplift and the rate of temperature changed rapidly,were two key time for the uplift-cooling history of the Permian strata in the Qishan area of the southwestern Weibei Uplift,Ordos Basin. 展开更多
关键词 low temperature thermochronology fission track (U-Th)/He basin modeling cooling history UPLIFT Ordos Basin
下载PDF
Thermo-tectonic history of the Junggar Alatau within the Central Asian Orogenic Belt(SE Kazakhstan,NW China):Insights from integrated apatite U/Pb,fission track and(U-Th)/He thermochronology 被引量:2
4
作者 S.Glorie A.Otasevic +7 位作者 J.Gillespie G.Jepson M.Danisik F.I.Zhimulev D.Gurevich Z.Zhang D.Song W.Xiao 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第6期2153-2166,共14页
The Junggar Alatau forms the northern extent of the Tian Shan within the Central Asian Orogenic Belt(CAOB)at the border of SE Kazakhstan and NW China.This study presents the Palaeozoic-Mesozoic post-collisional thermo... The Junggar Alatau forms the northern extent of the Tian Shan within the Central Asian Orogenic Belt(CAOB)at the border of SE Kazakhstan and NW China.This study presents the Palaeozoic-Mesozoic post-collisional thermo-tectonic history of this frontier locality using an integrated approach based on three apatite geo-/thermochronometers:apatite U-Pb,fission track and(U-Th)/He.The apatite U-Pb dates record Carboniferous-Permian post-magmatic cooling ages for the sampled granitoids,reflecting the progressive closure of the Palaeo-Asian Ocean.The apatite fission track(AFT)data record(partial)preservation of the late Palaeozoic cooling ages,supplemented by limited evidence for Late Triassic(~230-210 Ma)cooling and a more prominent record of(late)Early Cretaceous(~150-110 Ma)cooling.The apatite(U-Th)/He age results are consistent with the(late)Early Cretaceous AFT data,revealing a period of fast cooling at that time in resulting thermal history models.This Cretaceous rapid cooling signal is only observed for samples taken along the major NW-SE orientated shear zone that dissects the study area(the Central Kazakhstan Fault Zone),while Permian and Triassic cooling signals are preserved in low-relief areas,distal to this structure.This distinct geographical trend with respect to the shear zone,suggests that fault reactivation triggered the Cretaceous rapid cooling,which can be linked to a phase of slab-rollback and associated extension in the distant Tethys Ocean.Similar conclusions were drawn for thermochronology studies along other major NW-SE orientated shear zones in the Central Asian Orogenic Belt,suggesting a regional phase of Cretaceous exhumation in response to fault reactivation at that time. 展开更多
关键词 JUNGGAR Central Asian Orogenic Belt thermochronology EXHUMATION Fault reactivation TETHYS
下载PDF
Post-Triassic thermal history of the Tazhong Uplift Zone in the Tarim Basin, Northwest China: Evidence from apatite fssion-track thermochronology 被引量:2
5
作者 Caifu Xiang Xiongqi Pang Martin Daniík 《Geoscience Frontiers》 SCIE CAS CSCD 2013年第6期743-754,共12页
The Tarim Basin is a representative example of the basins developed in the northwest China that are characterized by multiple stages of heating and cooling.In order to better understand its complex thermal history,apa... The Tarim Basin is a representative example of the basins developed in the northwest China that are characterized by multiple stages of heating and cooling.In order to better understand its complex thermal history,apatite fission track (AFT) thermochronology was applied to borehole samples from the Tazhong Uplift Zone (TUZ).Twelve sedimentary samples of Silurian to Triassic depositional ages were analyzed from depths coinciding with the apatite partial annealing zone (~60-120 ℃).The AFT ages,ranging from 132 ± 7 Ma (from a Triassic sample) to 25 ± 2 Ma (from a Carboniferous sample),are clearly younger than their depositional ages and demonstrate a total resetting of the AFT thermometer after deposition.The AFT ages vary among different tectonic belts and decrease from the No.Ten Faulted Zone (133-105 Ma) in the northwest,the Central Horst Zone in the middle (108-37 Ma),to the East Buried Hill Zone in the south (51 25 Ma).Given the low magnitude of post-Triassic burial heating evidenced by low vitrinite reflectance values (Ro < 0.7%),the total resetting of the AFT system is speculated to result from the hot fluid flow along the faults.Thermal effects along the faults are well documented by younger AFT ages and unimodal single grain age distributions in the vicinity of the faults.Permian-early Triassic basaltic volcanism may be responsible for the early Triassic total annealing of those samples lacking connectivity with the fault.The above arguments are supported by thermal modeling results. 展开更多
关键词 Apatite fission track thermochronology TECTONICS Fluid flow Tazhong Uplift Zone Tarim Basin
下载PDF
A Compilation of New and Existing Thermochronology Data Concerning the Lhasa Terrane Combined with a Geological Synthesis of the Area 被引量:2
6
作者 ZHAO Zhongbao LI Chao +1 位作者 MA Xuxuan LI Haibing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第5期1534-1544,共11页
The history and geodynamic mechanisms of Cenozoic exhumation and denudation of the Lhasa terrane(LT),southern Tibetan Plateau, remain poorly constrained. Most previous studies investigating the exhumation of the LT ha... The history and geodynamic mechanisms of Cenozoic exhumation and denudation of the Lhasa terrane(LT),southern Tibetan Plateau, remain poorly constrained. Most previous studies investigating the exhumation of the LT have relied on extrapolating interpretations based on a few well-studied but small areas, which inevitably introduce bias. Here,our compilation of new and published thermochronologic ages are plotted against latitude, longitude, and elevation, to illustrate the distribution of cooling ages across broad regions of the LT. Primary results reveal that(1) the north LT experienced significant exhumation during 80–40 Ma;(2) compared with north LT, exhumation and erosion in the south LT continued after ~40 Ma;and(3) N–S striking rifting, E–W striking river incision, and thrusts led to continued local denudation of the south LT between 20–5 Ma. 展开更多
关键词 thermochronology exhumation and denudation GANGDESE Lhasa terrane Tibetan Plateau
下载PDF
Cenozoic Exhumation of Larsemann Hills,East Antarctica:Evidence from Apatite Fission-track Thermochronology 被引量:1
7
作者 CHEN Xuanhua JIANG Rongbao +3 位作者 WAN Jinglin XU Gang JIANG Mei CHEN Danhong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2010年第2期306-320,共15页
Does Cenozoic exhumation occur in the Larsemann Hills, East Antarctica? In the present paper, we conducted an apatite fission-track thermochronologic study across the Larsemann Hills of East Antarctica. Our work reve... Does Cenozoic exhumation occur in the Larsemann Hills, East Antarctica? In the present paper, we conducted an apatite fission-track thermochronologic study across the Larsemann Hills of East Antarctica. Our work reveals a Cenozoic exhumation event at 49.8 ± 12 Ma, which we interpret to be a result of exhumation caused by crustal extension. Within the uncertainty of our age determination, the timing of extension in East Antarctica determined by our study is coeval with the onset time of rifting in West Antarctica at c.55 Ma. The apatite fission-track cooling ages vary systematically in space, indicating a coherent block rotation of the Larsemann Hills region from c.50 Ma to c.10 Ma. This pattern of block tilting was locally disrupted by normal faulting along the Larsemann Hills detachment fault at c.5.4 Ma. The regional extension in the Larsemann Hills, East Antarctica was the result of tectonic evolution in this area, and may be related to the global extension. Through the discussion of Pan-Gondwanaland movement, and Mesozoic and Cenozoic extensions in West and East Antarctica and adjacent areas, we suggest that the protracted Cenozoic cooling over the Larsemann Hills area was caused by extensional tectonics related to separation and formation of the India Ocean at the time of Gondwanaland breakup. 展开更多
关键词 apatite fission-track thermochronology EXHUMATION normal faulting CENOZOIC Larsemann hills East Antarctica
下载PDF
Study on Late Cretaceous-Cenozoic exhumation of the Yanji area,NE China: insights from low-temperature thermochronology 被引量:1
8
作者 Xiaoming Li 《Acta Geochimica》 EI CAS CSCD 2019年第6期815-833,共19页
The Yanji area,northeastern China,a part of the orogenic collage between the North China Block in the south and the Jiamusi-Khanka Massifs in the northeast,is the most likely location where the Pacific Plate subductio... The Yanji area,northeastern China,a part of the orogenic collage between the North China Block in the south and the Jiamusi-Khanka Massifs in the northeast,is the most likely location where the Pacific Plate subduction・related magmatic activities and subsequent exhumation processes occurred.Here,we report new low-temperature thermochronology of apatite and zircon data from the granitoid samples in the Yanji area.The exhumation rates of Tianfozhishan,Yanji area,were〜0.049 and〜0.073 mm/year,interpreted from the elevations and apatite and zircon fission track ages,respectively.The exhumation,integrated with the geological setting,suggested that the paleogeothermal gradient of the Tianfozhishan,even extending to the Yanji area,was possibly to be greater than 35℃/km in the Late Cretaceous.The thermal history modeling of the data indicates a basically similar pattern,but the various timing for different samples between the Oligocene-Early Miocene and the Middle Miocene in the Yanji area.We hence conclude that a fourstages of cooling,from〜6.7℃/Ma(during the Late Cretaceous),to〜0.8℃/Ma(during the Late Cretaceous to the Oligocene-Early Miocene),then to〜2-3℃/Ma with varied styles(between the Oligocene-Early Miocene and the Middle Miocene),and finally to<0.2℃/Ma(since the Middle Miocene),has taken place through the exhumation of the Yanji area.The maximum exhumation is>3 km under a reasonable paleogeothermal gradient(>35℃/km),speculated from the possible exhumation rate of Tianfozhishan.Combined with the tectonic setting,this exhumation,including two stages of pronounced tectonic uplift and denudation and two stages of weak exhumation driven by the low regional erosion rate,is possibly related to the subduction of the Pacific Plate beneath the Eurasian Plate since the Late Cretaceous.This study used more robust evidence to propose higher paleogeothermal gradient(>35℃/km),reflecting exhumation of>3 km in the Yanji area since the Late Cretaceous. 展开更多
关键词 Low-temperature thermochronology EXHUMATION Pacific Plate subduction Yanji area Late Cretaceous-Cenozoic
下载PDF
Apatite fission track and (U-Th)/He thermochronology from the Archean Tanzania Craton: Contributions to cooling histories of Tanzanian basement rocks
9
作者 Charles H. Kasanzu 《Geoscience Frontiers》 SCIE CAS CSCD 2017年第5期999-1007,共9页
Borehole and surface samples from the Archean Tanzania Craton were analysed for apatite fission track(AFT) and(U-Th)/He data with the aim of deciphering cooling histories of the basement rocks. Fission track dates fro... Borehole and surface samples from the Archean Tanzania Craton were analysed for apatite fission track(AFT) and(U-Th)/He data with the aim of deciphering cooling histories of the basement rocks. Fission track dates from borehole and outcrop samples are Carboniferous-Permian(345± 33.3 Ma to271±31.7 Ma) whereas(U-Th)/He dates are Carboniferous-Triassic(336±45.8 Ma to 213±29 Ma) for outcrop grains and are consistently younger than corresponding AFT dates. Single grain(U-Th)/He dates from the borehole are likely to be flawed by excessive helium implantation due to their very low effective uranium contents, radiation damage and grain sizes. All AFT and(U-Th)/He dates are significantly younger than the stratigraphic ages of their host rocks, implying that the samples have experienced Phanerozoic elevated paleo-temperatures. Considerations of the data indicate removal of up to 9 km overburden since the Palaeozoic.Thermal modelling reveals a protracted rapid cooling event commencing during the early Carboniferous(ca. 350 Ma) at rates of 46 m/Ma ending in the Triassic(ca. 220 Ma). The model also suggests minor cooling during the Cretaceous of the samples to surface temperatures. The suggested later cooling event remains to be tested. The major cooling phase during the Carboniferous is interpreted to be associated with compressional tectonics during the Variscan Orogeny sensu far field induced stresses. Coeval sedimentation in the Karoo basins in the region suggests that most of the cooling of cratonic rocks during the Carboniferous was associated with denudation. 展开更多
关键词 thermochronology EXHUMATION Tanzania CRATON
下载PDF
Application of low-temperature thermochronology on ore deposits preservation framework in South China:a review
10
作者 Kang Min Jian-Feng Gao 《Acta Geochimica》 EI CAS CSCD 2022年第2期165-184,共20页
South China can be divided into four metallogenic belts:The Middle-Lower Yangtze Metallogenic Belt(MLYB),Qinzhou-Hangzhou Metallogenic Belt(QHMB),Nanling Metallogenic Belt(NLMB),and Wuyi Metallogenic Belt(WYMB).The ma... South China can be divided into four metallogenic belts:The Middle-Lower Yangtze Metallogenic Belt(MLYB),Qinzhou-Hangzhou Metallogenic Belt(QHMB),Nanling Metallogenic Belt(NLMB),and Wuyi Metallogenic Belt(WYMB).The major mineralization in the four metallogenic belts is granite-related Cu–Au–Mo and porphyrite Fe-apatite,porphyry Cu(Au),and epithermal Pb–Zn–Ag,hydrothermal Cu–Au–Pb–Zn–Ag,and granite-related skarn-type and quartz-veins W–Sn,respectively.Low-temperature thermochronology,including fissiontrack and U-Th/He dating,has been widely used to constrain tectonic thermal evolution and ore deposits preservation.Understanding fission-track annealing and He diffusion kinetics in accessory minerals,such as zircon and apatite,is essential for dating and applications.In this study,previous zircon fission-track(ZFT)and apatite fission-track(AFT)ages in South China were collected.The result shows that the ZFT ages are mainly concentrated at140–90 Ma,and the AFT ages are mainly distributed at70–40 Ma.The age distribution and inversion temperature–time paths reveal heterogeneous exhumation histories in South China.The MLYB experienced Late CretaceousCenozoic extremely slow exhumation after rapid cooling in the Early Cretaceous.The northern QHMB(i.e.from southern Anhui province to the Hangzhou Bay)had a relatively faster rate of uplifting and denudation than the southern QHMB in the Cretaceous.Subsequently,the northern QHMB rapidly exhumed,while the continuously slow exhumation operated the southern QHMB in the Cenozoic.The southern NLMB had a more rapid cooling rate than the northern NLMB during the Cretaceous time,and the whole NLMB experienced rapid cooling in the Cenozoic,except that the southern Hunan province had the most rapid cooling rate.The WYMB possibly had experienced slow exhumation since the Late Cretaceous.The exhumation thickness of the four metallogenic belts since90 Ma is approximately calculated as follows:the MLYB≤3.5 km,the northern QHMB concentrated at3.5–5.5 km,and the southern QHMB usually less than3.5 km,the NLMB 4.5–6.5 km and the WYMB<3.5 km.The exhumation thickness of the NLMB is corresponding to the occurrence of the world-class W deposits,which were emplaced into a deeper depth of 1.5–8 km.As such,we infer that the uplifting and denudation processes of the four metallogenic belts have also played an important role in dominated ore deposits. 展开更多
关键词 Low-temperature thermochronology Fissiontrack annealing and He diffusion kinetics South China Exhumation history Deposits preservation
下载PDF
Cenozoic Exhumation History of the East Kunlun Orogenic Belt Constrained by Apatite Fission-Track Thermochronology
11
作者 YANG Wei XIA Guoqing +1 位作者 WU Chihua YI Haisheng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2018年第3期1255-1256,共2页
Objective The East Kunlun Orogenic belt constitutes the first marked change in the topographic reliefs north of the Qinghai-Tibet Plateau.The Cenozoic tectonic evolution of this orogenic belt is crucial for understand... Objective The East Kunlun Orogenic belt constitutes the first marked change in the topographic reliefs north of the Qinghai-Tibet Plateau.The Cenozoic tectonic evolution of this orogenic belt is crucial for understanding the remote deformational effects of the Eurasian plate collision and the migration track at the northern margin of the plateau.However,when and how the uplift occurred remains 展开更多
关键词 Cenozoic Exhumation History the East Kunlun Orogenic Belt Constrained Apatite Fission-Track thermochronology
下载PDF
Fission Track Thermochronology Evidence for Multiple Periods of Mineralization in the Wulonggou Gold Deposits, Eastern Kunlun Mountains, Qinghai Province 被引量:13
12
作者 袁万明 莫宣学 +5 位作者 张爱奎 陈小宁 段宏伟 李希 郝娜娜 王先美 《Journal of Earth Science》 SCIE CAS CSCD 2013年第4期471-478,共8页
It is a puzzle to determine metallogenetic ages in the world. This article uses zircon fission track (FT) dating to probe the mineralizing epochs of Wulonggou (五龙沟) gold ore deposits in eastern Kunlun (昆仑) ... It is a puzzle to determine metallogenetic ages in the world. This article uses zircon fission track (FT) dating to probe the mineralizing epochs of Wulonggou (五龙沟) gold ore deposits in eastern Kunlun (昆仑) Mountains. Total of six zircon FT ages have been obtained and can be divided into groups of 235-216 and 197-181 Ma, as well as 162 and 124 Ma, revealing multiple epochs of metalloge- netic processes took place in Wulonggou area, mainly first two age groups. The mineralizing ages be- come lower from northeast Yanjingou (岩金沟) to southwest Hongqigon (红旗沟). The second epoch of 197-181 Ma is first achieved by this work. It is shown that the FT ages consist with other isotopic data and reflect different regional thermotectonic events. 展开更多
关键词 metallogenetic age mineralizing time fission track thermochronology gold deposit Wulonggou eastern Kunlun Mountains.
原文传递
Low-Temperature Thermochronology Constraints on the Mesozoic-Cenozoic Exhumation of the Huangling Massif in the Middle Yangtze Block, Central China 被引量:8
13
作者 葛翔 沈传波 +4 位作者 杨钊 梅廉夫 徐思煌 彭蕾 刘昭茜 《Journal of Earth Science》 SCIE CAS CSCD 2013年第4期541-552,共12页
The Huangling (黄陵) massif is an important area to understand the tectonic evolution of the northern Middle Yangtze Block. Integrating previously published thermochronology data with new zircon and apatite fission ... The Huangling (黄陵) massif is an important area to understand the tectonic evolution of the northern Middle Yangtze Block. Integrating previously published thermochronology data with new zircon and apatite fission track, and apatite (U-Th)/He thermochronometry, the Meso- Cenozoic exhumation history of the Huangling massif has been quantitatively studied. Based on the data and the time-temperature thermal history modelling results, the exhumation process of the Huangling massif can be divided into four stages: the slow cooling stage during 200-150 Ma; the rapid cooling event at ca. 150-80 Ma; a period of relative thermal stability during ca. 80-40 Ma, and an increase in cooling thereafter. Two rapid cooling/exhumation indicate two tectonic events in the northern Middle Yangtze Block. The rapid exhumation between ca. 150-80 Ma is likely related to a wide range Cretaceous intra-continental reactive and deformation in the eastern China. The accelerated cooling after ca. 40-30 Ma may result from a far-field effect of the India-Asia collision. 展开更多
关键词 fission track exhumation thermochronology Huangling massif YangtzeBlock.
原文传递
Late Triassic–Cenozoic Thermochronology in the Southern Sanjiang Tethys, SW China, New Insights from Zircon Fission Track Analysis 被引量:3
14
作者 Li Yang Wanming Yuan +1 位作者 Xiaoyong Zhu Zhen Shi 《Journal of Earth Science》 SCIE CAS CSCD 2019年第5期996-1004,共9页
The Sanjiang Tethys orogenic belt is located in the southeast side of the Qinghai-Tibet Plateau. It has undergone the opening and closing movements in different periods of Tethys oceans, complex accretive orogeny and ... The Sanjiang Tethys orogenic belt is located in the southeast side of the Qinghai-Tibet Plateau. It has undergone the opening and closing movements in different periods of Tethys oceans, complex accretive orogeny and strong mineralization from Paleozoic to Mesozoic. Using zircon fission track(ZFT) thermochronology, this study reveals the Sanjiang Tethys has experienced multi-stage tectonic activities during the Late Triassic–Cenozoic. The 15 ZFT ages with their decomposition components obtained from Sanjiang Tethysian region range from 212 to 19 Ma, which not only shows 6 age groups of 212, 179–172, 156–133, 121–96, 84–70 and 50–19 Ma, but also constrains the age limit of the tectonothermal events. These age groups recorded the Paleo-Tethys main and branches ocean opening/closure time. The age-elevation plot indicates the Sanjiang region had differential uplifting and exhumation and fast uplifting times of ca. 133, 116 and 80 Ma, coinciding with the age groups mentioned above. These results show new geochronological evidences and viewpoints. 展开更多
关键词 tectonic events ZIRCON FISSION track analysis TETHYS evolution Sanjiang region Qinghai-Tibet Plateau thermochronology
原文传递
^(40)Ar/^(39)Ar Thermochronology Constraints on Jurassic Tectonothermal Event of Nyainrong Microcontinent 被引量:2
15
作者 Chaoming Xie Cai Li +2 位作者 Yanwang Wu Ming Wang Peiyuan Hu 《Journal of Earth Science》 SCIE CAS CSCD 2014年第1期98-108,共11页
To reveal the Jurassic tectonothermal event occurring to the Nyainrong microcontinent which is gripped among the Bangong-Nujiang suture zone,^40Ar/^39Ar dating was carried out on the basement orthogneiss and Jurassic ... To reveal the Jurassic tectonothermal event occurring to the Nyainrong microcontinent which is gripped among the Bangong-Nujiang suture zone,^40Ar/^39Ar dating was carried out on the basement orthogneiss and Jurassic granitc gneiss in the microcontinent. In the heating stage, four sam- pies exhibited a flat plateau age, with the value Tp concentrated in the range of 166-176 Ma; isochron age Ti was concentrated in the range of 165-175 Ma, and their corresponding ages were the consistent within allowable range. The ages should be representative of the era of the final deformation of the Amdo gneiss and cooling emplacement of the magmatic rock in the Jurassic. The geochronological studies have shown that the final deformation of microcontinent crystalline basement and the cooling of the Mesozoic large-scale tectonothermal events occurred in late Middle Jurassic. In Middle Jurassic, Nyainrong microcontinent experienced strong tectonic movement. Combining with the geochronologi- cal with isotope geochemistry for the microcontinent, the cause of the tectonothermal event should be attributed to the collision between the Nyainrong microcontinent and South Qiangtang Block following the northward subduction of Bangong-Nujiang oceanic crust. 展开更多
关键词 Tibet Plateau Nyainrong microcontinent JURASSIC tectonothermal event ^40Ar/^39Ar thermochronology.
原文传递
Uplift and exhumation in the Tianshan,western China:New insights from detrital zircon morphology and thermochronology
16
作者 Jian CHANG Yinglin ZHANG +1 位作者 Nansheng QIU Chenxing LI 《Science China Earth Sciences》 SCIE EI CSCD 2022年第3期449-461,共13页
The Tianshan in western China is rich in ore resources,but its tectonic uplift and exhumation history closely related to the resource exploration is still controversial.This study provides a new strategy to uncover th... The Tianshan in western China is rich in ore resources,but its tectonic uplift and exhumation history closely related to the resource exploration is still controversial.This study provides a new strategy to uncover the tectonic uplift processes in southern Tianshan by combining the morphological characteristics and thermochronological ages of detrital zircons in the Tarim Basin.The morphology of the Meso-Cenozoic detrital zircons in the Kuqa Foreland Basin,a secondary tectonic unit of the Tarim Basin,is dominated by three types of P,S,and G,and their average alkaline and temperature indexes are 668.0-677.2 and 347.6-413.5,respectively.Moreover,the U-Pb ages of these detrital zircons are primarily divided into two groups of 270-330 and 380-470 Ma.These features indicate that the Early Carboniferous-Early Permian and Middle Ordovician-Middle Devonian alkaline granites distributed in the South Tianshan and southern Central Tianshan were the main sources of the detrital zircons in the Kuqa Foreland Basin.The decomposition of the detrital zircon fission track ages further reveals that the provenances of the Kuqa Foreland Basin primarily consisted of the southern Central Tianshan,the eastern South Tianshan,and the central South Tianshan during Meso-Cenozoic.Among them,the eastern South Tianshan played a dominant role in the material supply.The synthesis of the decomposed zircon fission track(ZFT)ages and the lag-time evolution pattern indicated that the South Tianshan and the southern Central Tianshan mainly experienced five stages of tectonic uplifting that occurred in the Devonian,the Permian,the Middle Triassic-Middle Jurassic,the Cretaceous,and since the Miocene,respectively.They were related to the subduction of the South Tianshan Ocean northward to the bottom of the Central Tianshan,the compression and accretion after the closure of the South Tianshan Ocean,and a series of collisions between the Qiangtang-Lassa-India plates and the southern margin of the Eurasia plate in the Meso-Cenozoic,respectively.This study provides a new provenance analysis method,which was successfully applied in the Tianshan,and also develops a new way to study Central Asia’s tectonic evolution. 展开更多
关键词 TIANSHAN Kuqa Foreland Basin Provenance analysis Zircon morphology thermochronology Lag-time evolution
原文传递
Burial and exhumation history of the Xigaze forearc basin, Yarlung suture zone. Tibet 被引量:3
17
作者 Devon A.Orme 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第3期895-908,共14页
The Cretaceous-Eocene Xigaze forearc basin is a crucial data archive for understanding the tectonic history of the Asian continental margin prior to and following collision with India during the early Cenozoic Era. Th... The Cretaceous-Eocene Xigaze forearc basin is a crucial data archive for understanding the tectonic history of the Asian continental margin prior to and following collision with India during the early Cenozoic Era. This study reports apatite and zircon(U-Th)/He thermochronologic data from fourteen samples from Albian-Ypresian Xigaze forearc strata to determine the degree and timing of heating(burial) and subsequent cooling(exhumation) of two localities along the Yarlung suture zone(YSZ) near the towns of Saga and Lazi. Thirty-seven individual zircon He ages range from 31.5 ± 0.8 Ma to6.06 ± 0.18 Ma,with the majority of grains yielding ages between 30 Ma and 10 Ma. Twenty apatite He ages range from 12.7 ± 0.5 Ma to 3.9 ± 0.3 Ma,with the majority of grains yielding ages between 9 Ma and 4 Ma. These ages suggest that the Xigaze forearc basin was heated to 140-200 ℃ prior to cooling in Oligocene-Miocene time. Thermal modeling supports this interpretation and shows that the samples were buried to maximum temperatures of ~140-200 0 C by 35-21 Ma, immediately followed by the onset of exhumation. The zircon He and apatite He dataset and thermal modeling results indicate rapid exhumation from ~21 Ma to 15 Ma, and at ~4 Ma. The 21-15 Ma thermochronometric signal appears to be regionally extensive, affecting all the lithotectonic units of the YSZ, and coincides with movement along the north-vergent Great Counter Thrust system. Thrusting, coupled with enhanced erosion possibly related to the paleo-Yarlung River, likely drove Early Miocene cooling of the Xigaze forearc basin.In contrast, the younger phase of rapid exhumation at ~4 Ma was likely driven by enhanced rock uplift in the footwall of north-striking rifts that cross-cut the YSZ. 展开更多
关键词 Xigaze TIBET FOREARC BASIN thermochronology Yarlung
下载PDF
An apatite U-Pb thermal history map for the northern Gawler Craton,South Australia 被引量:1
18
作者 James W.Hall Stijn Glorie +3 位作者 Anthony J.Reid Samuel C.Boone Alan S.Collins ANDrew Gleadow 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第5期1293-1308,共16页
Apatite U-Pb thermochronology was applied to granitoid basement samples across the northern Gawler Craton to unravel the Proterozoic, post-orogenic, cooling history and to examine the role of major fault zones during ... Apatite U-Pb thermochronology was applied to granitoid basement samples across the northern Gawler Craton to unravel the Proterozoic, post-orogenic, cooling history and to examine the role of major fault zones during cooling. Our observations indicate that cooling following the ~2500 Ma Sleaford Orogeny and ~1700 Ma Kimban Orogeny is restricted to the Christie and Wilgena Domains of the central northern Gawler Craton. The northern Gawler Craton mainly records post-Hiltaba Event(~1590 Ma) U-Pb cooling ages. Cooling following the ~1560 Ma Kararan Orogeny is preserved within the Coober Pedy Ridge,Nawa Domain and along major shear zones within the south-western Fowler Domain. The Nawa Domain samples preserve U-Pb cooling ages that are >150 Ma younger than the samples within the Coober Pedy Ridge and Fowler Domain, indicating that later(~1300 Ma) fault movement within the Nawa Domain facilitated cooling of these samples, caused by arc collision in the Madura Province of eastern Western Australia. When compared to^(40)Ar/^(39) Ar from muscovite, biotite and hornblende, our new apatite U-Pb ages correlate well, particularly in regions of higher data density. Our data also preserve a progressive younging of U-Pb ages from the nucleus of the craton to the periphery with a stark contrast in U-Pb ages across major structures such as the Karari Shear Zone and the Southern Overthrust, which indicates the timing of reactivation of these major crustal structures. Although this interpolation was based solely on thermochronological data and did not take into account structural or other geological data, these maps are consistent with the structural architecture of the Gawler Craton and reveal the thermal footprint of known tectonic and magmatic events in the Gawler Craton. 展开更多
关键词 APATITE UePb Gawler CRATON Karari SHEAR Zone thermochronology Hiltaba event
下载PDF
Continental accretion and incremental deformation in the thermochronologic evolution of the Lesser Caucasus 被引量:1
19
作者 William Cavazza Irene Albino +2 位作者 Ghazar Galoyan Massimiliano Zattin Silvia Cattò 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第6期2189-2202,共14页
Apatite fission-track analysis and thermochronologic statistical modeling of Precambrian-Oligocenc plutonic and metamorphic rocks from the Lesser Caucasus resolve two discrete cooling episodes.Cooling occurred during ... Apatite fission-track analysis and thermochronologic statistical modeling of Precambrian-Oligocenc plutonic and metamorphic rocks from the Lesser Caucasus resolve two discrete cooling episodes.Cooling occurred during incremental crustal shortening due to obduction and continental accretion along the margins of the northern branch of the Neotethys.(1)The thermochronometric record of a Late Cretaceous(Turonian-Maastrichtian)cooling/exhumation event,coeval to widespread ophiolite obduction,is still present only in a relatively small area of the upper plate of the Amasia-Sevan-Akera(ASA)suture zone,i.e.the suture marking the final closure of the northern Neotethys during the Paleogene.Such area has not been affected by significant later exhumation.(2)Rapid cooling/exhumation occurred in the Early-Middle Miocene in both the lower and upper plates of the ASA suture zone,obscuring previous thermochronologic signatures over most of the study area.Miocene contractional reactivation of the ASA suture zone occurred contemporaneously with the main phase of shortening and exhumation along the Bitlis suture zone marking the closure of the southern branch of the Neotethys and the ensuing ArabiaEurasia collision.Miocene collisional stress from the Bitlis suture zone was transmitted northward across the Anatolian hinterland,which was left relatively undeformed,and focused along preexisting structural discontinuities such as the eastern Pontides and the ASA suture zone. 展开更多
关键词 Lesser CAUCASUS Low-temperature thermochronology APATITE FISSION-TRACK analysis Structural REACTIVATION Far-field TECTONICS
下载PDF
New approach to resolve the amount of Quaternary uplift and associated denudation of the mountain ranges in the Japanese Islands 被引量:1
20
作者 Shigeru Sueoka Hiroyuki Tsutsumi Takahiro Tagami 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第2期197-210,共14页
Low-temperature thermochronology is a widely used tool for revealing denudation histories of mountain ranges. Although this technique has been applied mainly to continental orogens, such as the European Alps, Himalaya... Low-temperature thermochronology is a widely used tool for revealing denudation histories of mountain ranges. Although this technique has been applied mainly to continental orogens, such as the European Alps, Himalayas, and Andes, recent technological development of low-temperature thermochronology has made it applicable to a wider variety of mountain ranges with various sizes and tectonic histories. The Japanese Islands comprise young and active island arcs, where an early stage of mountain range formation is observed. Numerous attempts have been made to constrain the uplift and denudation histories of the mountains in the Japanese Islands using geologic, geomorphologic, or geodetic methods. However, the number of thermochronometric attempts has been limited primarily due to the small amount of total denudation since the initiation of the uplift. In this review paper, we introduce the tectonic and geomorphic settings of the mountain ranges in the Japanese Islands, and discuss previous attempts to estimate uplift or denudation of the Japanese mountains using methods other than ther- mochronology. Furthermore, we discuss problems of the thermochronometric applications in revealing denudation histories of the Japanese mountains. Finally, we present a case study of the Kiso Range in central Japan and discuss the current effectiveness and applicability of low-temperature thermochronology to the Japanese mountainous areas. 展开更多
关键词 Low-temperature thermochronology DENUDATION Japanese Islands Fault-block mountain T-d relationships
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部