Hydroelastic behavior of an elastic wedge impacting on calm water surface was investigated. A partitioned approach by coupling finite difference method (FDM) and finite element method (FEM) was developed to analyz...Hydroelastic behavior of an elastic wedge impacting on calm water surface was investigated. A partitioned approach by coupling finite difference method (FDM) and finite element method (FEM) was developed to analyze the fluid structure interaction (FSI) problem. The FDM, in which the Constraint Interpolation Profile (CIP) method was applied, was used for solving the flow field in a fixed regular Cartesian grid system. Free surface was captured by the Tangent of Hyperbola for Interface Capturing with Slope Weighting (THINC/SW) scheme. The FEM was applied for calculating the structural deformation. A volume weighted method, which was based on the immersed boundary (IB) method, was adopted for coupling the FDM and the FEM together. An elastic wedge water entry problem was calculated by the coupled FDM-FEM method. Also a comparison between the current numerical results and the published results indicate that the coupled FDM-FEM method has reasonably good accuracy in predicting the impact force.展开更多
入水问题涉及到军事、航空等领域,如子弹入水、船舶砰击等,具有很强的应用背景。物体入水的过程涉及到固、液、气三相流动和相互作用,并伴随水花飞溅、空泡形成等复杂的物理现象。该文基于紧致插值CIP(constrained interpolation profi...入水问题涉及到军事、航空等领域,如子弹入水、船舶砰击等,具有很强的应用背景。物体入水的过程涉及到固、液、气三相流动和相互作用,并伴随水花飞溅、空泡形成等复杂的物理现象。该文基于紧致插值CIP(constrained interpolation profile)数学模型,分步求解Navier-Stokes(N-S)方程,并通过多相流理论描述固-液-气之间的相互作用,采用Volume of Fluid(VOF)类型的高精度紧致tangent of hyperbola for interface capturing(THINC)方法重构自由面。模拟了刚性圆柱和方柱的入水过程,结果与实验数据吻合较好。展开更多
基金the support of Grants-in-Aid for Scientific Research (B), MEXT (No.24360358)
文摘Hydroelastic behavior of an elastic wedge impacting on calm water surface was investigated. A partitioned approach by coupling finite difference method (FDM) and finite element method (FEM) was developed to analyze the fluid structure interaction (FSI) problem. The FDM, in which the Constraint Interpolation Profile (CIP) method was applied, was used for solving the flow field in a fixed regular Cartesian grid system. Free surface was captured by the Tangent of Hyperbola for Interface Capturing with Slope Weighting (THINC/SW) scheme. The FEM was applied for calculating the structural deformation. A volume weighted method, which was based on the immersed boundary (IB) method, was adopted for coupling the FDM and the FEM together. An elastic wedge water entry problem was calculated by the coupled FDM-FEM method. Also a comparison between the current numerical results and the published results indicate that the coupled FDM-FEM method has reasonably good accuracy in predicting the impact force.
文摘入水问题涉及到军事、航空等领域,如子弹入水、船舶砰击等,具有很强的应用背景。物体入水的过程涉及到固、液、气三相流动和相互作用,并伴随水花飞溅、空泡形成等复杂的物理现象。该文基于紧致插值CIP(constrained interpolation profile)数学模型,分步求解Navier-Stokes(N-S)方程,并通过多相流理论描述固-液-气之间的相互作用,采用Volume of Fluid(VOF)类型的高精度紧致tangent of hyperbola for interface capturing(THINC)方法重构自由面。模拟了刚性圆柱和方柱的入水过程,结果与实验数据吻合较好。