Through-space interactions of pi orbiatl and sigma orbital in molecule tricycle 4,2,2,2,dodecadiene -1.5 were studied by means of DV-X alpha SVF method using a model molecule that consists of two ethylenes with interd...Through-space interactions of pi orbiatl and sigma orbital in molecule tricycle 4,2,2,2,dodecadiene -1.5 were studied by means of DV-X alpha SVF method using a model molecule that consists of two ethylenes with interdeck distance D. The results show the through-space interactions of the title molecule decrease with the increasing of D,the through-space interactions of pi orbital are larger than that of sigma orbital. Furthermore, through-bond interactions of the pi orbtial and sigma orbital were analyzed basing on the calculations of the electronic structure of the title molecule. Both through-space and through-bond interactions are Large and,the net interactions are small. The calculated ionization potential energies of the title molecule which were obtained by transition-state procedure are in good agreement with the PE spectroscopy.展开更多
Constructing charge transfer(CT)state by introducing donor(D)and acceptor(A)is an efficient strategy to regulate the photophysical properties of luminescent materials.Traditional CT-type luminophores are built onπ-co...Constructing charge transfer(CT)state by introducing donor(D)and acceptor(A)is an efficient strategy to regulate the photophysical properties of luminescent materials.Traditional CT-type luminophores are built onπ-conjugated fused-ring structures,which always show hybrid CT/locally excited(LE)states and luminescence quenching effect in the aggregate state.In this work,eight conjugated biphenyl(BP)and nonconjugated diphenylmethane(DPM)derivatives with different donors and acceptors are synthesized to investigate the CT properties.Systematic photophysical characterization and theoretical calculation demonstrate that the through-space CT(TSCT)in nonconjugated DA-DPM exhibit superior photophysical performance than the conjugated DA-BP with through-bond CT(TBCT),the main manifestations are as follows:(1)TSCT luminophores produce longer maximum emission wavelength(λ_(em))than the corresponding TBCT ones.For example,the longest λ_(em)of DMA-CN-DPM(DMA,dimethylamino)is 621 nm but the corresponding λ_(em)of DMA-CN-BP is only 480 nm.(2)TSCT-based DA-DPM demonstrates more sensitive responsiveness to environmental stimuli such as temperature and polarity.(3)Complete separation of the the highest occupied molecular orbital(HOMO)and the lowest unoccupied molecular orbital(LUMO)distribution exists in all kinds of conformation of DA-DPM,which was hard to realize in conjugated DA-BP.展开更多
Through-space conjugation(TSC)is a noncovalently electronic interaction that is emerging as a potential complement to through-bond conjugation(TBC)-based strategies for constructing luminescent materials.However,the d...Through-space conjugation(TSC)is a noncovalently electronic interaction that is emerging as a potential complement to through-bond conjugation(TBC)-based strategies for constructing luminescent materials.However,the design of efficient luminogens based on TSC is currently challenging due to a lack of established structure-property understanding.This is particularly true in the case of luminogens displaying aggregation-induced emission(AIE)effects.In this work,three terphenyl derivatives were prepared,and their photophysical properties were systemically studied.It was found that relative to the corresponding m-and p-linked analogues,the electronic interaction of TBC is weakened while the strength of TSC is commensurately enhanced in the constitutional isomer containing an o-linked fjordtype subunit.Within this set of luminogens,the presence of a fjord-type arrangement promotes a transformation from aggregation-caused quenching to AIE.Further investigations involving congeneric quaterphenyl and pentphenyl isomers support the universality of the fjord-type unit as a framework for synthesizing AIE-active luminogens(AIEgens)with inherent TSC.This work not only provides a novel set of AIEgens but also establishes the utility of TSC in controlling the photophysical properties of nonconventional and twisted luminogens.展开更多
The construction of molecular chirality is crucial for exploring novel luminophores with chiroptical properties.Classic asymmetric synthesis of chiral center or axial is not powerful enough on through-space architectu...The construction of molecular chirality is crucial for exploring novel luminophores with chiroptical properties.Classic asymmetric synthesis of chiral center or axial is not powerful enough on through-space architecture.Accessible methodologies for breaking molecular symmetry could be promising but remain less investigated.Herein,we report a novel methodology for constructing chiral through-space luminophores via simple chlorination on bridged carbazole motifs.The chlorination breaks the molecular symmetry and thus results in molecular chirality by eliminating the mirror plane or rotating axis.Interestingly,continuous multiple chlorinations can rebuild and break the symmetry of the skeleton in succession.Several chiral and achiral isomeric analogues are synthesized and characterized with impressive chiroptical properties.Results of chiral high performance liquid chromatography(HPLC),single-crystal X-ray diffraction,kinetic racemization,and chiroptical property investigation demonstrate the effectiveness of our rational design strategy.It provides a feasible methodology for exploring novel chiral luminescent materials based on versatile though-space skeletons.展开更多
Through-space charge transfer(TSCT)is regarded as an effective way to develop thermally activated delayed fluorescence(TADF)emitters.Based on this strategy,many molecular frameworks have been proposed,among which spir...Through-space charge transfer(TSCT)is regarded as an effective way to develop thermally activated delayed fluorescence(TADF)emitters.Based on this strategy,many molecular frameworks have been proposed,among which spirobased scaffolds have been extensively studied due to their unique advantages.In this work,we developed three emitters SPS,SPO,and SPON,which were constructed with the same donor and various acceptors to explore the influence of acceptor modulation at the C9 position of fluorene for spirostructure TSCT emitters.The results show that the acceptor with too weak electronwithdrawing ability will cause the emitter to not have TADF properties,while the acceptor with too much steric hindrance will weaken the face-to-faceπ-πstacking interaction between donor/acceptor(D/A).Since SPO balances the electron-withdrawing strength and steric hindrance of the acceptor,it achieves the highest external quantum efficiency(EQE)of 17.75%.This work shows that appropriate acceptor selection is essential for the TADF properties and high efficiency of the spirobased scaffold TSCT emitter.展开更多
Nonconjugated clusteroluminogens(CLgens),such as proteins and polystyrene,have become increasingly important in photophysics.They show many advantages over traditional conjugated dyes with fused aromatic rings in biol...Nonconjugated clusteroluminogens(CLgens),such as proteins and polystyrene,have become increasingly important in photophysics.They show many advantages over traditional conjugated dyes with fused aromatic rings in biological applications.However,CLgens have historically been unheeded because of their weak visible emissions in the aggregate state,namely clusteroluminescence(CL).Changing the electronic structures of CLgens by precisely regulating the intramolecular throughspace interaction(TSI)to improve their photophysical properties remains an enormous challenge.Herein,we propose a general strategy to construct a higher-level intramolecular TSI,namely secondary TSI constructed by the primary TSI and a TSI linker,in multi-aryl-substituted alkanes(MAAs).By introducing methyl and phenyl into 1,1,3,3-tetraphenylpropane,the modified MAAs show efficient CL with high luminescence quantum yield(-40%)and long emission wavelength(-530 nm).Then,comprehensive experiments and theoretical studies demonstrate that molecular rigidity and overlap of subunits play pivotal roles in improving these hierarchical TSIs.This work not only provides a feasible strategy to achieve controllable manipulation of hierarchical TSIs and CL but also establishes comprehensive TSI-based aggregate photophysics.展开更多
Knowledge about electronic structures is important to gain an understanding of the unique functional properties of diradicaloids.In this study,we synthesized and characterized a diradicaloid in which two phenalenyl ra...Knowledge about electronic structures is important to gain an understanding of the unique functional properties of diradicaloids.In this study,we synthesized and characterized a diradicaloid in which two phenalenyl radical sites are coupled antiferromagnetically via a through-space interaction.The results of quantum chemical,physicochemical(^(1)H NMR,electronic absorption,cyclic voltammetry,SQUID,ESR),and chemical reactivity studies show that this diradicaloid has singlet diradical character.An assessment of the nature of the bonding interaction between two radical sites in this species using DFT calculations demonstrates that a small spatial overlap between the two SOMOs in this diradicaloid provides an efficient electron exchange path for the singlet state to be substantially lower in energy than the triplet state.展开更多
Efficient electronic coupling is the key to constructing optoelectronic functionalπsystems.Generally,the delocalization ofπelectrons must comply with the framework constructed by covalent bonds(typicallyσbonds),rep...Efficient electronic coupling is the key to constructing optoelectronic functionalπsystems.Generally,the delocalization ofπelectrons must comply with the framework constructed by covalent bonds(typicallyσbonds),representing classic through-bond conjuga-tion.However,through-space conjugation offers an alternative that achieves spatial electron communica-tionwith closely stacked π systems instead of covalent bonds thus enabling multidimensional energy and charge transport.展开更多
Three kinds of through-space charge transfer(TSCT)blue polymers containing non-conjugated polystyrene backbone together with spatially-separated acridan donor and oxygen-bridged triphenylboron acceptors having differe...Three kinds of through-space charge transfer(TSCT)blue polymers containing non-conjugated polystyrene backbone together with spatially-separated acridan donor and oxygen-bridged triphenylboron acceptors having different substituents of tert-butyl,hydrogen and fluorine are designed and synthesized.The designed TSCT blue polymers possess photoluminescence quantum yields up to 70%in solid-state film,single-triplet energy splitting below 0.1 eV,and typical thermally activated delayed fluorescence(TADF)effect.Meanwhile,the resulting polymers exhibit aggregation-induced emission(AIE)effect with emission intensity increased by up to^27 folds from solution to aggregation state.By changing the substituent of acceptors to tune the charge transfer strength,blue emission with peaks from 444 to 480 nm can be realized for the resulting polymers.Solution-processed organic light-emitting diodes based on the polymers exhibit excellent device performance with Commission Internationale de L’Eclairage(CIE)coordinates of(0.16,0.27),together with the maximum luminous efficiency of 30.7 cd A-1 and maximum external quantum efficiency of 15.0%,which is the best device efficiency for blue TADF polymers.展开更多
Through-space charge transfer(TSCT)polymers are an attractive class of luminescent polymers with spatial donor/acceptor architecture and thermally activated delayed fluorescence effect,different from conventional lumi...Through-space charge transfer(TSCT)polymers are an attractive class of luminescent polymers with spatial donor/acceptor architecture and thermally activated delayed fluorescence effect,different from conventional luminescent polymers with conjugated donor-acceptor structure and through-bond charge transfer emission.Their emission comes from the intramolecular charge transfer by through-space pathway because the donor and acceptor segments are spatially proximate to each other in each repeating unit but are physically separated by nonconjugated polymer backbone.In this review,recent advances in TSCT polymers with linear,bottlebrush,and dendritic architectures are presented,with the focus on their molecular design,photophysical behavior,and device performance.We hope that this review shall provide a useful insight of new luminescent polymers with TSCT effect for use in solution-processed organic light-emitting diodes.展开更多
Through-space conjugated molecules are interesting building blocks for the construction of functional materials that allow multi-dimensional transport of carrier and energy.However,the well explored through-space conj...Through-space conjugated molecules are interesting building blocks for the construction of functional materials that allow multi-dimensional transport of carrier and energy.However,the well explored through-space conjugated molecules are quite limited,which defers their structure-property correlation establishment and wide-scale application.In this review,we introduce a kind of newly-emerging folded tetraphenylethene derivatives featuring through-space conjugation.Their synthesis,crystal and electronic structures,and optical properties are described,and their representative applications as bipolar charge-transporting materials in organic light-emitting diodes and as single-molecule wires in molecular devices are presented,which are anticipated to provide guidance for the further expansion of through-space conjugated systems.展开更多
Three carbazole derivatives, Ac PTC, Px PTC and Pt PTC, consisting of two 9,9-dimethyl-9,10-dihydroacridine,phenoxazine or phenothiazine donor groups and one diphenyltriazine acceptor group fixed at 1,8,9-positions of...Three carbazole derivatives, Ac PTC, Px PTC and Pt PTC, consisting of two 9,9-dimethyl-9,10-dihydroacridine,phenoxazine or phenothiazine donor groups and one diphenyltriazine acceptor group fixed at 1,8,9-positions of a single carbazole ring via phenylene, are designed and synthesized. X-ray diffraction analysis of Ac PTC reveals that there exist multiple π-π interactions between the donor and acceptor groups to form a sandwich-like structural unit with edge-to-face interaction model. The compounds thus show obvious thermally activated delayed fluorescence with through-space charge transfer character and possess considerable photoluminescence quantum yields of up to 73% in doped films with sky-blue to yellow emissions. The solution-processed electroluminescent devices achieve the highest maximum external quantum efficiencies of 10.0%, 11% and 5.6% for Ac PTC, Px PTC and Pt PTC, respectively, with small efficiency roll-offs.展开更多
近年来,随着肺结节的比例升高,术前经皮肺穿刺活检或经支气管镜活检越来越受到重视。大量临床证据也证实,Ⅰ期非小细胞肺癌(non-small cell lung cancer,NSCLC)的肺穿刺活检是安全可行的。但是,由于肺磨玻璃结节的组织学特点,与实性结...近年来,随着肺结节的比例升高,术前经皮肺穿刺活检或经支气管镜活检越来越受到重视。大量临床证据也证实,Ⅰ期非小细胞肺癌(non-small cell lung cancer,NSCLC)的肺穿刺活检是安全可行的。但是,由于肺磨玻璃结节的组织学特点,与实性结节相比穿刺时更容易发生出血或咳嗽,肿瘤细胞在血流或气流冲击下可能会沿着肺泡壁或针道种植,导致胸膜复发和气腔播散(spread through air spaces,STAS),尤其是胸膜下结节合并有脏层胸膜侵犯和淋巴细胞浸润时需要慎重选择。展开更多
针对无刷双馈风力发电系统,稳态时,采用基于空间矢量调制(Space Vector Modulation,SVM)的直接功率控制(Direct Power Control,DPC)技术。在电网电压对称跌落条件下,理论分析功率绕组磁链与控制绕组电压的关系,对于故障期间控制绕组会...针对无刷双馈风力发电系统,稳态时,采用基于空间矢量调制(Space Vector Modulation,SVM)的直接功率控制(Direct Power Control,DPC)技术。在电网电压对称跌落条件下,理论分析功率绕组磁链与控制绕组电压的关系,对于故障期间控制绕组会产生较大的过电流,严重时可能损害变流器功率器件的问题,在原有的控制方案中引入前馈控制。通过将可观测的功率绕组电流进行微分运算后得到反映控制绕组反电势的直接干扰量,将其经前馈控制器引入到控制电压的参考值端,形成一种基于前馈控制的SVM-DPC复合控制。仿真结果表明,基于功率绕组电流微分前馈控制的复合控制策略可以在一定程度上抑制控制绕组过电流,能为无刷双馈风力发电机实现低电压穿越提供参考。展开更多
基金The project is supported by National Nature Scrence Funds of China.
文摘Through-space interactions of pi orbiatl and sigma orbital in molecule tricycle 4,2,2,2,dodecadiene -1.5 were studied by means of DV-X alpha SVF method using a model molecule that consists of two ethylenes with interdeck distance D. The results show the through-space interactions of the title molecule decrease with the increasing of D,the through-space interactions of pi orbital are larger than that of sigma orbital. Furthermore, through-bond interactions of the pi orbtial and sigma orbital were analyzed basing on the calculations of the electronic structure of the title molecule. Both through-space and through-bond interactions are Large and,the net interactions are small. The calculated ionization potential energies of the title molecule which were obtained by transition-state procedure are in good agreement with the PE spectroscopy.
基金supported by the National Natural Science Foundation of China(22205197)the project funded by China Postdoctoral Science Foundation(2022M712721)。
文摘Constructing charge transfer(CT)state by introducing donor(D)and acceptor(A)is an efficient strategy to regulate the photophysical properties of luminescent materials.Traditional CT-type luminophores are built onπ-conjugated fused-ring structures,which always show hybrid CT/locally excited(LE)states and luminescence quenching effect in the aggregate state.In this work,eight conjugated biphenyl(BP)and nonconjugated diphenylmethane(DPM)derivatives with different donors and acceptors are synthesized to investigate the CT properties.Systematic photophysical characterization and theoretical calculation demonstrate that the through-space CT(TSCT)in nonconjugated DA-DPM exhibit superior photophysical performance than the conjugated DA-BP with through-bond CT(TBCT),the main manifestations are as follows:(1)TSCT luminophores produce longer maximum emission wavelength(λ_(em))than the corresponding TBCT ones.For example,the longest λ_(em)of DMA-CN-DPM(DMA,dimethylamino)is 621 nm but the corresponding λ_(em)of DMA-CN-BP is only 480 nm.(2)TSCT-based DA-DPM demonstrates more sensitive responsiveness to environmental stimuli such as temperature and polarity.(3)Complete separation of the the highest occupied molecular orbital(HOMO)and the lowest unoccupied molecular orbital(LUMO)distribution exists in all kinds of conformation of DA-DPM,which was hard to realize in conjugated DA-BP.
基金F.H.thanks National Key Research and Development Program of China (grant no.2021YFA0910100)National Natural Science Foundation of China (grant no.22035006)+5 种基金Zhejiang Provincial Natural Science Foundation of China (grant no.LD21B020001)the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study (grant no.SN-ZJU-SIAS-006)the Leading Innovation Team grant from Department of Science and Technology of Zhejiang Province (grant no.2022R01005)for financial supportH.Z.thanks the National Science Foundation of China (grant no.22205197)for supportY.-Q.H.acknowledges support from the Chinese Postdoctoral Science Foundation (grant no.2022M712735)J.L.S.thanks the Robert A.Welch Foundation for chair support (grant no.F-0018).
文摘Through-space conjugation(TSC)is a noncovalently electronic interaction that is emerging as a potential complement to through-bond conjugation(TBC)-based strategies for constructing luminescent materials.However,the design of efficient luminogens based on TSC is currently challenging due to a lack of established structure-property understanding.This is particularly true in the case of luminogens displaying aggregation-induced emission(AIE)effects.In this work,three terphenyl derivatives were prepared,and their photophysical properties were systemically studied.It was found that relative to the corresponding m-and p-linked analogues,the electronic interaction of TBC is weakened while the strength of TSC is commensurately enhanced in the constitutional isomer containing an o-linked fjordtype subunit.Within this set of luminogens,the presence of a fjord-type arrangement promotes a transformation from aggregation-caused quenching to AIE.Further investigations involving congeneric quaterphenyl and pentphenyl isomers support the universality of the fjord-type unit as a framework for synthesizing AIE-active luminogens(AIEgens)with inherent TSC.This work not only provides a novel set of AIEgens but also establishes the utility of TSC in controlling the photophysical properties of nonconventional and twisted luminogens.
基金supported by the National Natural Science Foundation of China(21975061)Shenzhen Fundamental Research Program(JCYJ20190806142403535,GXWD20201230155427003-20200728150952003)
文摘The construction of molecular chirality is crucial for exploring novel luminophores with chiroptical properties.Classic asymmetric synthesis of chiral center or axial is not powerful enough on through-space architecture.Accessible methodologies for breaking molecular symmetry could be promising but remain less investigated.Herein,we report a novel methodology for constructing chiral through-space luminophores via simple chlorination on bridged carbazole motifs.The chlorination breaks the molecular symmetry and thus results in molecular chirality by eliminating the mirror plane or rotating axis.Interestingly,continuous multiple chlorinations can rebuild and break the symmetry of the skeleton in succession.Several chiral and achiral isomeric analogues are synthesized and characterized with impressive chiroptical properties.Results of chiral high performance liquid chromatography(HPLC),single-crystal X-ray diffraction,kinetic racemization,and chiroptical property investigation demonstrate the effectiveness of our rational design strategy.It provides a feasible methodology for exploring novel chiral luminescent materials based on versatile though-space skeletons.
基金financial support from the National Natural Science Foundation of China(Nos.51773141,51873139,61961160731,62175171 and 22175124)funded by the Suzhou Science and Technology Plan Project(No.SYG202010)+2 种基金supported by Suzhou Key Laboratory of Functional Nano&Soft Materials,Collaborative Innovation Center of Suzhou Nano Science&Technologythe 111 ProjectJoint International Research Laboratory of Carbon-Based Functional Materials and Devices。
文摘Through-space charge transfer(TSCT)is regarded as an effective way to develop thermally activated delayed fluorescence(TADF)emitters.Based on this strategy,many molecular frameworks have been proposed,among which spirobased scaffolds have been extensively studied due to their unique advantages.In this work,we developed three emitters SPS,SPO,and SPON,which were constructed with the same donor and various acceptors to explore the influence of acceptor modulation at the C9 position of fluorene for spirostructure TSCT emitters.The results show that the acceptor with too weak electronwithdrawing ability will cause the emitter to not have TADF properties,while the acceptor with too much steric hindrance will weaken the face-to-faceπ-πstacking interaction between donor/acceptor(D/A).Since SPO balances the electron-withdrawing strength and steric hindrance of the acceptor,it achieves the highest external quantum efficiency(EQE)of 17.75%.This work shows that appropriate acceptor selection is essential for the TADF properties and high efficiency of the spirobased scaffold TSCT emitter.
基金the National Science Foundation of China(grant no.22205197)the project funded by China Postdoctoral Science Foundation(grant no.2022M712721)the Youth Talent Excellence Program of ZJU-Hangzhou Global Scientific and Technological Innovation Center for their financial support.
文摘Nonconjugated clusteroluminogens(CLgens),such as proteins and polystyrene,have become increasingly important in photophysics.They show many advantages over traditional conjugated dyes with fused aromatic rings in biological applications.However,CLgens have historically been unheeded because of their weak visible emissions in the aggregate state,namely clusteroluminescence(CL).Changing the electronic structures of CLgens by precisely regulating the intramolecular throughspace interaction(TSI)to improve their photophysical properties remains an enormous challenge.Herein,we propose a general strategy to construct a higher-level intramolecular TSI,namely secondary TSI constructed by the primary TSI and a TSI linker,in multi-aryl-substituted alkanes(MAAs).By introducing methyl and phenyl into 1,1,3,3-tetraphenylpropane,the modified MAAs show efficient CL with high luminescence quantum yield(-40%)and long emission wavelength(-530 nm).Then,comprehensive experiments and theoretical studies demonstrate that molecular rigidity and overlap of subunits play pivotal roles in improving these hierarchical TSIs.This work not only provides a feasible strategy to achieve controllable manipulation of hierarchical TSIs and CL but also establishes comprehensive TSI-based aggregate photophysics.
基金the JSPS for KAKENHI funding(Grant No.JP21H01918 and JP20K21194)a Grant-in-Aid for Transformative Research Areas(A)“Condensed Conjugation”(JSPS for KAKENHI funding Grant No.JP20H05865)from MEXT,Japan.
文摘Knowledge about electronic structures is important to gain an understanding of the unique functional properties of diradicaloids.In this study,we synthesized and characterized a diradicaloid in which two phenalenyl radical sites are coupled antiferromagnetically via a through-space interaction.The results of quantum chemical,physicochemical(^(1)H NMR,electronic absorption,cyclic voltammetry,SQUID,ESR),and chemical reactivity studies show that this diradicaloid has singlet diradical character.An assessment of the nature of the bonding interaction between two radical sites in this species using DFT calculations demonstrates that a small spatial overlap between the two SOMOs in this diradicaloid provides an efficient electron exchange path for the singlet state to be substantially lower in energy than the triplet state.
基金This work was financially supported by the National Natural Science Foundation of China(21788102 and 21673082)the National Basic Research Program of Chi-na(973 Program,2015CB655004)founded by MOST+2 种基金the Guangdong Natural Science Funds for Distinguished Young Scholar(2014A030306035)the Natural Science Foundation of Guangdong Province(2016A030312002)the Innovation and Technology Commission of Hong Kong(ITC-CNERC14SC01).
文摘Efficient electronic coupling is the key to constructing optoelectronic functionalπsystems.Generally,the delocalization ofπelectrons must comply with the framework constructed by covalent bonds(typicallyσbonds),representing classic through-bond conjuga-tion.However,through-space conjugation offers an alternative that achieves spatial electron communica-tionwith closely stacked π systems instead of covalent bonds thus enabling multidimensional energy and charge transport.
基金supported by the National Natural Science Foundation of China(51833009,21975247,51573182)the National Program on Key Basic Research Project of China(2015CB655000)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2015180)。
文摘Three kinds of through-space charge transfer(TSCT)blue polymers containing non-conjugated polystyrene backbone together with spatially-separated acridan donor and oxygen-bridged triphenylboron acceptors having different substituents of tert-butyl,hydrogen and fluorine are designed and synthesized.The designed TSCT blue polymers possess photoluminescence quantum yields up to 70%in solid-state film,single-triplet energy splitting below 0.1 eV,and typical thermally activated delayed fluorescence(TADF)effect.Meanwhile,the resulting polymers exhibit aggregation-induced emission(AIE)effect with emission intensity increased by up to^27 folds from solution to aggregation state.By changing the substituent of acceptors to tune the charge transfer strength,blue emission with peaks from 444 to 480 nm can be realized for the resulting polymers.Solution-processed organic light-emitting diodes based on the polymers exhibit excellent device performance with Commission Internationale de L’Eclairage(CIE)coordinates of(0.16,0.27),together with the maximum luminous efficiency of 30.7 cd A-1 and maximum external quantum efficiency of 15.0%,which is the best device efficiency for blue TADF polymers.
基金National Natural Science Foundation of China,Grant/Award Numbers:51833009,52073282,91833306973 Project,Grant/Award Number:2015CB655000Youth Innovation Promotion Association of Chinese Academy of Sciences,Grant/Award Number:2015180。
文摘Through-space charge transfer(TSCT)polymers are an attractive class of luminescent polymers with spatial donor/acceptor architecture and thermally activated delayed fluorescence effect,different from conventional luminescent polymers with conjugated donor-acceptor structure and through-bond charge transfer emission.Their emission comes from the intramolecular charge transfer by through-space pathway because the donor and acceptor segments are spatially proximate to each other in each repeating unit but are physically separated by nonconjugated polymer backbone.In this review,recent advances in TSCT polymers with linear,bottlebrush,and dendritic architectures are presented,with the focus on their molecular design,photophysical behavior,and device performance.We hope that this review shall provide a useful insight of new luminescent polymers with TSCT effect for use in solution-processed organic light-emitting diodes.
基金the financial support from the National Natural Science Foundation of China(No.51273053)the National Basic Research Program of China(973 Program,Nos.2015CB655004 and 2013CB834702)+5 种基金the Guangdong Natural Science Funds for Distinguished Young Scholar(No.2014A030306035)the Guangdong Innovative Research Team Program of China(No.201101C0105067115)the Science and Technology Project of Guangdong Province(No.2016B090907001)the ITC-CNERC14S01,the Fundamental Research Funds for the Central Universities(Nos.2015PT020 and 2015ZY013)the Natural Science Foundation of Guangdong Province(No.2016A030312002)the National Undergraduate Innovative and Entrepreneurial Training Program(No.201410561032)
文摘Through-space conjugated molecules are interesting building blocks for the construction of functional materials that allow multi-dimensional transport of carrier and energy.However,the well explored through-space conjugated molecules are quite limited,which defers their structure-property correlation establishment and wide-scale application.In this review,we introduce a kind of newly-emerging folded tetraphenylethene derivatives featuring through-space conjugation.Their synthesis,crystal and electronic structures,and optical properties are described,and their representative applications as bipolar charge-transporting materials in organic light-emitting diodes and as single-molecule wires in molecular devices are presented,which are anticipated to provide guidance for the further expansion of through-space conjugated systems.
基金supported by the National Natural Science Foundation of China (Nos. 51973210, 21805271 and 21674110)the Science and Technology Development Project of Jilin Province, China (No. 20190201071JC)。
文摘Three carbazole derivatives, Ac PTC, Px PTC and Pt PTC, consisting of two 9,9-dimethyl-9,10-dihydroacridine,phenoxazine or phenothiazine donor groups and one diphenyltriazine acceptor group fixed at 1,8,9-positions of a single carbazole ring via phenylene, are designed and synthesized. X-ray diffraction analysis of Ac PTC reveals that there exist multiple π-π interactions between the donor and acceptor groups to form a sandwich-like structural unit with edge-to-face interaction model. The compounds thus show obvious thermally activated delayed fluorescence with through-space charge transfer character and possess considerable photoluminescence quantum yields of up to 73% in doped films with sky-blue to yellow emissions. The solution-processed electroluminescent devices achieve the highest maximum external quantum efficiencies of 10.0%, 11% and 5.6% for Ac PTC, Px PTC and Pt PTC, respectively, with small efficiency roll-offs.
文摘近年来,随着肺结节的比例升高,术前经皮肺穿刺活检或经支气管镜活检越来越受到重视。大量临床证据也证实,Ⅰ期非小细胞肺癌(non-small cell lung cancer,NSCLC)的肺穿刺活检是安全可行的。但是,由于肺磨玻璃结节的组织学特点,与实性结节相比穿刺时更容易发生出血或咳嗽,肿瘤细胞在血流或气流冲击下可能会沿着肺泡壁或针道种植,导致胸膜复发和气腔播散(spread through air spaces,STAS),尤其是胸膜下结节合并有脏层胸膜侵犯和淋巴细胞浸润时需要慎重选择。
文摘针对无刷双馈风力发电系统,稳态时,采用基于空间矢量调制(Space Vector Modulation,SVM)的直接功率控制(Direct Power Control,DPC)技术。在电网电压对称跌落条件下,理论分析功率绕组磁链与控制绕组电压的关系,对于故障期间控制绕组会产生较大的过电流,严重时可能损害变流器功率器件的问题,在原有的控制方案中引入前馈控制。通过将可观测的功率绕组电流进行微分运算后得到反映控制绕组反电势的直接干扰量,将其经前馈控制器引入到控制电压的参考值端,形成一种基于前馈控制的SVM-DPC复合控制。仿真结果表明,基于功率绕组电流微分前馈控制的复合控制策略可以在一定程度上抑制控制绕组过电流,能为无刷双馈风力发电机实现低电压穿越提供参考。