The thorough exploration of the transverse quality represented by divergence angle has been lacking yet in the energy spread measurement of the relativistic electron beam for laser wakefield acceleration(LWFA). In thi...The thorough exploration of the transverse quality represented by divergence angle has been lacking yet in the energy spread measurement of the relativistic electron beam for laser wakefield acceleration(LWFA). In this work, we fill this gap by numerical simulations based on the experimental data, which indicate that in a C-shape magnet, magnetic field possesses the beam focusing effect, considering that the divergence angle will result in an increase in the full width at half maxima(FWHM) of the electron density distribution in a uniformly isotropic manner, while the length-to-width ratio decreases. This indicates that the energy spread obtained from the electron deflection distance is smaller than the actual value, regardless of the divergence angle. A promising and efficient way to accurately correct the value is presented by considering the divergence angle(for instance, for an electron beam with a length-to-width ratio of 1.12, the energy spread correct from 1.2% to 1.5%), providing a reference for developing the high-quality electron beam source.展开更多
A technique of electron acceleration in the cone shaped stationary laser field is proposed. An electron acceleration in this laser is studied, which shows that there is no electron bunching but there exists electron c...A technique of electron acceleration in the cone shaped stationary laser field is proposed. An electron acceleration in this laser is studied, which shows that there is no electron bunching but there exists electron capture in this laser field.展开更多
The irradiation of few-nm-thick targets by a finite-contrast high-intensity short-pulse laser results in a strong pre-expansion of these targets at the arrival time of the main pulse.The targets decompress to near and...The irradiation of few-nm-thick targets by a finite-contrast high-intensity short-pulse laser results in a strong pre-expansion of these targets at the arrival time of the main pulse.The targets decompress to near and lower than critical densities with plasmas extending over few micrometers,i.e.multiple wavelengths.The interaction of the main pulse with such a highly localized but inhomogeneous target leads to the generation of a short channel and further self-focusing of the laser beam.Experiments at the Glass Hybrid OPCPA Scaled Test-bed(GHOST)laser system at University of Texas,Austin using such targets measured non-Maxwellian,peaked electron distribution with large bunch charge and high electron density in the laser propagation direction.These results are reproduced in 2D PIC simulations using the EPOCH code,identifying direct laser acceleration(DLA)[1]as the responsible mechanism.This is the first time that DLA has been observed to produce peaked spectra as opposed to broad,Maxwellian spectra observed in earlier experiments[2].This high-density electrons have potential applications as injector beams for a further wakefield acceleration stage as well as for pump-probe applications.展开更多
A compact 10 MeV S-band irradiation electron linear accelerator(linac)was developed to simulate electronic radiation in outer space and perform electron irradiation effect tests on spacecraft materials and devices.Acc...A compact 10 MeV S-band irradiation electron linear accelerator(linac)was developed to simulate electronic radiation in outer space and perform electron irradiation effect tests on spacecraft materials and devices.According to the requirements of space environment simulation,the electron beam energy can be adjusted in the range from 3.5 to 10 MeV,and the average current can be adjusted in the range from 0.1 to 1 mA.The linac should be capable of providing beam irradiation over a large area of 1 m^(2) with a uniformity greater than 90% and a scanning rate of 100 Hz.A novel method was applied to achieve such a high beam scanning rate by combining a kicker and a scanning magnet.Based on this requirement,a design for the10 MeV linac is proposed with an RF power pulse repetition rate of 500 Hz;it includes a thermal cathode electron gun,a bunching-accelerating section,and a scanning transport line.The detailed physical design and dynamic simulation results of the proposed 10 MeV electron linac are presented in this paper.展开更多
In layered optimization scheme and solid state cathodoluminescence, silicon oxide plays a very important role in obtaining high energy hot electrons to excite luminescent centers or organic luminescent ma terials. The...In layered optimization scheme and solid state cathodoluminescence, silicon oxide plays a very important role in obtaining high energy hot electrons to excite luminescent centers or organic luminescent ma terials. The acceleration ability of electrons of SiO2 and ZnS was compared through the variation of emission intensity based on ZnS:Er phosphor during the reverse of polarity of sinusoidal voltage. The ratio of maximum emission intensity under positive and negative half period is 2.18. This result not only demonstrates that parts of primary electron comes from electrode, but electrons in conduction band of SiO2 can be heated to higher energy than that of ZnS.展开更多
This paper investigates the properties of the ultrashort pulsed beam aimed to the capture-and-acceleration-scenario (CAS) vacuum electron acceleration. The result shows that the spatiotemporal distribution of the ph...This paper investigates the properties of the ultrashort pulsed beam aimed to the capture-and-acceleration-scenario (CAS) vacuum electron acceleration. The result shows that the spatiotemporal distribution of the phase velocity, the longitudinal component of the electric field and the acceleration quality factor are qualitatively similar to that of the continuous-wave Gaussian beam, and are slightly influenced by the spatiotemporal coupling of the ultrashort pulsed beam. When the pulse is compressed to an ultrashort one in which the pulse duration TFWHM 〈 5T0, the variation of the maximum net energy gain due to the carrier-envelope phase is a crucial disadvantage in the CAS acceleration process.展开更多
Within the framework of plane-wave angular spectrum analysis of the electromagnetic field structure, a solution valid for tightly focused radially polarized few-cycle laser pulses propagating in vacuum is presented. T...Within the framework of plane-wave angular spectrum analysis of the electromagnetic field structure, a solution valid for tightly focused radially polarized few-cycle laser pulses propagating in vacuum is presented. The resulting field distribution is significantly different from that based on the paraxial approximation for pulses with either small or large beam diameters. We compare the electron accelerations obtained with the two solutions and find that the energy gain obtained with our new solution is usually much larger than that with the paraxial approximation solution.展开更多
Electron acceleration in plasma driven by circular polarized ultraintense laser with asymmetric pulse axe investigated analytically and numerically in terms of oscillation-center Hamiltonian formalism. Studies include...Electron acceleration in plasma driven by circular polarized ultraintense laser with asymmetric pulse axe investigated analytically and numerically in terms of oscillation-center Hamiltonian formalism. Studies include wakefield acceleration, which dominates in blow-out or bubble regime and snow-plow acceleration which dominates in supra-bubble regime. By a comparison with each other it is found that snow-plow acceleration has lower acceleration capability. In wakefield acceleration, there exists an obvious optimum pulse asymmetry or/and pulse lengths that leads to the high net energy gain while in snow-plow acceleration it is insensitive to the pulse lengths. Power and linear scaling laws for wakefield and snow-plow acceleration respetively are observed from the net energy gain depending on laser field amplitude. Moreover, there exists also an upper and lower limit on plasma density for an effective acceleration in both of regimes.展开更多
By numerically solving the relativistic equations of motion of a single electron in laserfields modeled by a Gaussian laser beam, we get the trajectory and energy of the electron. Whenthe drifting distance is comparab...By numerically solving the relativistic equations of motion of a single electron in laserfields modeled by a Gaussian laser beam, we get the trajectory and energy of the electron. Whenthe drifting distance is comparable to or even longer than the corresponding Rayleigh length, theevolution of the beam waist cannot be neglected. The asymmetry of intensity in acceleration anddeceleration leads to the conclusion that the electron can be accelerated effectively and extracted bythe longitudinal ponderomotive force. For intensities above 10~(19) Wμm~2/cm~2, an electron's energygain about MeV can be realized, and the energetic electron is parallel with the propagation axis.展开更多
Electron dynamics in the fields associated with a transverse magnetic (TM) wave propagating inside a rectangular waveguide is analytically studied. The relativistic momentum and energy equations for an electron are ...Electron dynamics in the fields associated with a transverse magnetic (TM) wave propagating inside a rectangular waveguide is analytically studied. The relativistic momentum and energy equations for an electron are solved, which was injected initially along the propagation direction of the microwave. Expressions of the acceleration gradient and deflection angle are obtained. In principle, it is shown that the electron can be accelerated in this condition and there is no deflection when the electron is injected from the centre of the waveguide front. However, it is found that the acceleration gradient and deflection angle depend strongly on the parameters of the microwave (intensity, frequency, etc.) and the dimensions of the waveguide.展开更多
The basic physical characteristics of electrons accelerated by two linearly polarized and circularly symmetric crossed Laguerre-Gaussian (LG) laser beams with equal frequency and amplitude in vacuum are studied in d...The basic physical characteristics of electrons accelerated by two linearly polarized and circularly symmetric crossed Laguerre-Gaussian (LG) laser beams with equal frequency and amplitude in vacuum are studied in detail. The condition, under which electrons can be accelerated effectively, and the energy gain are discussed.展开更多
The wake bubble expansion and contraction by adding a dense-plasma wall in the background plasma during the mode transition from laser wakefield to plasma wakefield accel- eration is investigated by particle-in-cell s...The wake bubble expansion and contraction by adding a dense-plasma wall in the background plasma during the mode transition from laser wakefield to plasma wakefield accel- eration is investigated by particle-in-cell simulations. The electrons are injected continuously into the cavity until the lateral bubble size equals the inner diameter of the wall. The injected electron bunch from the laser wakefield acceleration (LWFA) scheme is quasi phase-stably accel- erated forward because of the longitudinal contraction of the bubble. After the laser pulse is depleted completely, the electron bunch generated from the LWFA scheme drives a plasma wake- field. The electrons remaining in the channel are trapped and accelerated by the plasma wakefield. Ultimately, two energetic electron bunches with a narrow energy spread and low emittance are obtained.展开更多
The acceleration ability of electrons in SiO2 and ZnS was compared through the variation of emission intensity based on ZnS : Er electroluminescence during the reverse of polarity of sinusoidal voltage. In order to a...The acceleration ability of electrons in SiO2 and ZnS was compared through the variation of emission intensity based on ZnS : Er electroluminescence during the reverse of polarity of sinusoidal voltage. In order to avoid the influence of work function of electrode, cathodal and anodal materials were ITO (indium tin oxide). The ratio of maximum emission intensity under positive and negative half period is 2.18. This result demonstrates that the electron acceleration ability of SiO2 is 2.18 times stronger than that of ZnS.展开更多
The direct acceleration of electrons by using two linearly polarized crossed Bessel-Gaussian (BG) beams with equal frequency and amplitude in vacuum is proposed and studied. It is shown that two linearly polarized B...The direct acceleration of electrons by using two linearly polarized crossed Bessel-Gaussian (BG) beams with equal frequency and amplitude in vacuum is proposed and studied. It is shown that two linearly polarized BG beams of the same order (0 or 1) with a π-rad phase difference have a resultant non-zero longitudinal electric field on the z-axis and can be used, in principle, to accelerate electrons.展开更多
With the development of photocathode rf electron gun, electrons with high-brightness and mono-energy can be obtained easily. By numerically solving the relativistic equations of motion of an electron generated from th...With the development of photocathode rf electron gun, electrons with high-brightness and mono-energy can be obtained easily. By numerically solving the relativistic equations of motion of an electron generated from this facility in laser fields modelled by a circular polarized Gaussian laser pulse, we find the electron can obtain high energy gain from the laser pulse. The corresponding acceleration distance for this electron driven by the ascending part of the laser pulse is much longer than the Rayleigh length, and the light amplitude experienced on the electron is very weak when the laser pulse overtakes the electron. The electron is accelerated effectively and the deceleration can be neglected.For intensities around 1019 W·μm2/cm2,an electron's energy gain near 0.1 GeV can be realized when its initial energy is 4.5 MeV, and the final velocity of the energetic electron is parallel with the propagation axis. The energy gain can be up to 1 GeV if the intensity is about 1021 W·μm2/cm2.The final energy gain of the electron as a function of its initial conditions and the parameters of the laser beam has also been discussed.展开更多
We present analytical studies of electron acceleration in the low-density preplasma of a thin solid target byan intense femtosecond laser pulse.Electrons in the preplasma are trapped and accelerated by the ponderomoti...We present analytical studies of electron acceleration in the low-density preplasma of a thin solid target byan intense femtosecond laser pulse.Electrons in the preplasma are trapped and accelerated by the ponderomotive forceas well as the wake field.Two-dimensional particle-in-cell simulations show that when the laser pulse is stopped by thetarget,electrons trapped in the laser pules can be extracted and move forward inertially.The energetic electron bunchin the bubble is unaffected by the reflected pulse and passes through the target with small energy spread and emittance.There is an optimal preplasma density for the generation of the monoenergetic electron bunch if a laser pulse is given.The maximum electron energy is inverse proportion to the preplasma density.展开更多
In this study,we investigate the generation of parametric decay instability,Langmuir turbulence formation,and electron acceleration in ionospheric heating via a two-fluid model using the Fokker-Planck equation and Vla...In this study,we investigate the generation of parametric decay instability,Langmuir turbulence formation,and electron acceleration in ionospheric heating via a two-fluid model using the Fokker-Planck equation and Vlasov-Poisson system simulations.The simulation results of both the magnetofluid model and the kinetic model demonstrate the dynamics of electron acceleration.Further,the results of the Vlasov-Poisson simulations suggest the formation of electron holes in phase space at the same spatial scale as the Langmuir wave,which are shown to be related to electron acceleration.In addition,electron acceleration is enhanced through the extension of the wavenumber spectrum caused by strong Langmuir turbulence,leading to more electron holes in phase space.展开更多
The magnetic merging process related to pairwise magnetic islands coalescence is investigated by two-dimensional particle-in-cell simulations with a guide field.Owing to the force of attraction between parallel curren...The magnetic merging process related to pairwise magnetic islands coalescence is investigated by two-dimensional particle-in-cell simulations with a guide field.Owing to the force of attraction between parallel currents within the initial magnetic islands,the magnetic islands begin to approach each other and merge into one big island.We find that this newly formed island is unstable and can be divided into two small magnetic islands spontaneously.Lastly,these two small islands merge again.We follow the time evolution of this process,in which the contributions of three mechanisms of electron acceleration at different stages,including the Fermi,parallel electric field,and betatron mechanisms,are studied with the guide center theory.展开更多
Relativistic magnetic reconnection(MR)driven by two ultra-intense lasers with different spot separation distances is simulated by a three-dimensional(3D)kinetic relativistic particle-in-cell(PIC)code.We find that chan...Relativistic magnetic reconnection(MR)driven by two ultra-intense lasers with different spot separation distances is simulated by a three-dimensional(3D)kinetic relativistic particle-in-cell(PIC)code.We find that changing the separation distance between two laser spots can lead to different magnetization parameters of the laser plasma environment.As the separation distance becomes larger,the magnetization parameterσbecomes smaller.The electrons are accelerated in these MR processes and their energy spectra can be fitted with double power-law spectra whose index will increase with increasing separation distance.Moreover,the collisionless shocks’contribution to energetic electrons is close to the magnetic reconnection contribution withσdecreasing,which results in a steeper electron energy spectrum.Basing on the3D outflow momentum configuration,the energetic electron spectra are recounted and their spectrum index is close to 1 in these three cases because the magnetization parameterσis very high in the 3D outflow area.展开更多
We study the dynamics of single electron in an inhomogeneous cylindrical plasma channel during the direct acceleration by linearly polarized chirped laser pulse.By adjusting the parameters of the chirped laser pulse a...We study the dynamics of single electron in an inhomogeneous cylindrical plasma channel during the direct acceleration by linearly polarized chirped laser pulse.By adjusting the parameters of the chirped laser pulse and the plasma channel,we obtain the energy gain,trajectory,dephasing rate and unstable threshold of electron oscillation in the channel.The influences of the chirped factor and inhomogeneous plasma density distribution on the electron dynamics are discussed in depth.We find that the nonlinearly chirped laser pulse and the inhomogeneous plasma channel have strong coupled influence on the electron dynamics.The electron energy gain can be enhanced,the instability threshold of the electron oscillation can be lowered,and the acceleration length can be shortened by chirped laser,while the inhomogeneity of the plasma channel can reduce the amplitude of the chirped laser.展开更多
基金Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA1601700)the National Natural Science Foundation of China (Grant Nos. 12074251, 11991073, 12335016, 12305272, and 12105174)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA25000000 and XDA25030400)Yangyang Development Fund,China。
文摘The thorough exploration of the transverse quality represented by divergence angle has been lacking yet in the energy spread measurement of the relativistic electron beam for laser wakefield acceleration(LWFA). In this work, we fill this gap by numerical simulations based on the experimental data, which indicate that in a C-shape magnet, magnetic field possesses the beam focusing effect, considering that the divergence angle will result in an increase in the full width at half maxima(FWHM) of the electron density distribution in a uniformly isotropic manner, while the length-to-width ratio decreases. This indicates that the energy spread obtained from the electron deflection distance is smaller than the actual value, regardless of the divergence angle. A promising and efficient way to accurately correct the value is presented by considering the divergence angle(for instance, for an electron beam with a length-to-width ratio of 1.12, the energy spread correct from 1.2% to 1.5%), providing a reference for developing the high-quality electron beam source.
文摘A technique of electron acceleration in the cone shaped stationary laser field is proposed. An electron acceleration in this laser is studied, which shows that there is no electron bunching but there exists electron capture in this laser field.
基金supported by NNSA cooperative agreement DE-NA0002008the Defense Advanced Research Projects Agency's PULSE program(12-63-PULSE-FP014)the Air Force Office of Scientific Research(FA9550-14-1-0045).
文摘The irradiation of few-nm-thick targets by a finite-contrast high-intensity short-pulse laser results in a strong pre-expansion of these targets at the arrival time of the main pulse.The targets decompress to near and lower than critical densities with plasmas extending over few micrometers,i.e.multiple wavelengths.The interaction of the main pulse with such a highly localized but inhomogeneous target leads to the generation of a short channel and further self-focusing of the laser beam.Experiments at the Glass Hybrid OPCPA Scaled Test-bed(GHOST)laser system at University of Texas,Austin using such targets measured non-Maxwellian,peaked electron distribution with large bunch charge and high electron density in the laser propagation direction.These results are reproduced in 2D PIC simulations using the EPOCH code,identifying direct laser acceleration(DLA)[1]as the responsible mechanism.This is the first time that DLA has been observed to produce peaked spectra as opposed to broad,Maxwellian spectra observed in earlier experiments[2].This high-density electrons have potential applications as injector beams for a further wakefield acceleration stage as well as for pump-probe applications.
文摘A compact 10 MeV S-band irradiation electron linear accelerator(linac)was developed to simulate electronic radiation in outer space and perform electron irradiation effect tests on spacecraft materials and devices.According to the requirements of space environment simulation,the electron beam energy can be adjusted in the range from 3.5 to 10 MeV,and the average current can be adjusted in the range from 0.1 to 1 mA.The linac should be capable of providing beam irradiation over a large area of 1 m^(2) with a uniformity greater than 90% and a scanning rate of 100 Hz.A novel method was applied to achieve such a high beam scanning rate by combining a kicker and a scanning magnet.Based on this requirement,a design for the10 MeV linac is proposed with an RF power pulse repetition rate of 500 Hz;it includes a thermal cathode electron gun,a bunching-accelerating section,and a scanning transport line.The detailed physical design and dynamic simulation results of the proposed 10 MeV electron linac are presented in this paper.
文摘In layered optimization scheme and solid state cathodoluminescence, silicon oxide plays a very important role in obtaining high energy hot electrons to excite luminescent centers or organic luminescent ma terials. The acceleration ability of electrons of SiO2 and ZnS was compared through the variation of emission intensity based on ZnS:Er phosphor during the reverse of polarity of sinusoidal voltage. The ratio of maximum emission intensity under positive and negative half period is 2.18. This result not only demonstrates that parts of primary electron comes from electrode, but electrons in conduction band of SiO2 can be heated to higher energy than that of ZnS.
基金Project supported by the Natural Science Foundation of China (Grant Nos 60538010, 10335030 and 10376009), the Science and Technology Commission of Shanghai, China (Grant Nos 05JC14005 and 05SG02), and the Graduate Science and Technology Innovation Foundation of Fudan University, China.
文摘This paper investigates the properties of the ultrashort pulsed beam aimed to the capture-and-acceleration-scenario (CAS) vacuum electron acceleration. The result shows that the spatiotemporal distribution of the phase velocity, the longitudinal component of the electric field and the acceleration quality factor are qualitatively similar to that of the continuous-wave Gaussian beam, and are slightly influenced by the spatiotemporal coupling of the ultrashort pulsed beam. When the pulse is compressed to an ultrashort one in which the pulse duration TFWHM 〈 5T0, the variation of the maximum net energy gain due to the carrier-envelope phase is a crucial disadvantage in the CAS acceleration process.
基金supported by the National Natural Science Foundation of China (Grant Nos.10734130,10935002,and 11075105)the National Basic Research Program of China (Grant No.2009GB105002)
文摘Within the framework of plane-wave angular spectrum analysis of the electromagnetic field structure, a solution valid for tightly focused radially polarized few-cycle laser pulses propagating in vacuum is presented. The resulting field distribution is significantly different from that based on the paraxial approximation for pulses with either small or large beam diameters. We compare the electron accelerations obtained with the two solutions and find that the energy gain obtained with our new solution is usually much larger than that with the paraxial approximation solution.
基金Supported by the National Natural Science Foundation of China(NSFC)under Grant Nos.10875015 and 10834008
文摘Electron acceleration in plasma driven by circular polarized ultraintense laser with asymmetric pulse axe investigated analytically and numerically in terms of oscillation-center Hamiltonian formalism. Studies include wakefield acceleration, which dominates in blow-out or bubble regime and snow-plow acceleration which dominates in supra-bubble regime. By a comparison with each other it is found that snow-plow acceleration has lower acceleration capability. In wakefield acceleration, there exists an obvious optimum pulse asymmetry or/and pulse lengths that leads to the high net energy gain while in snow-plow acceleration it is insensitive to the pulse lengths. Power and linear scaling laws for wakefield and snow-plow acceleration respetively are observed from the net energy gain depending on laser field amplitude. Moreover, there exists also an upper and lower limit on plasma density for an effective acceleration in both of regimes.
基金The project supported by the Special Foundation for P. Lu from Chinese Academy of Science, the National Natural Science Foundation of China (No.10375083), the National High-Technology ICF Committee in China, and the National key Basic Research Special Fo
文摘By numerically solving the relativistic equations of motion of a single electron in laserfields modeled by a Gaussian laser beam, we get the trajectory and energy of the electron. Whenthe drifting distance is comparable to or even longer than the corresponding Rayleigh length, theevolution of the beam waist cannot be neglected. The asymmetry of intensity in acceleration anddeceleration leads to the conclusion that the electron can be accelerated effectively and extracted bythe longitudinal ponderomotive force. For intensities above 10~(19) Wμm~2/cm~2, an electron's energygain about MeV can be realized, and the energetic electron is parallel with the propagation axis.
文摘Electron dynamics in the fields associated with a transverse magnetic (TM) wave propagating inside a rectangular waveguide is analytically studied. The relativistic momentum and energy equations for an electron are solved, which was injected initially along the propagation direction of the microwave. Expressions of the acceleration gradient and deflection angle are obtained. In principle, it is shown that the electron can be accelerated in this condition and there is no deflection when the electron is injected from the centre of the waveguide front. However, it is found that the acceleration gradient and deflection angle depend strongly on the parameters of the microwave (intensity, frequency, etc.) and the dimensions of the waveguide.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574097).
文摘The basic physical characteristics of electrons accelerated by two linearly polarized and circularly symmetric crossed Laguerre-Gaussian (LG) laser beams with equal frequency and amplitude in vacuum are studied in detail. The condition, under which electrons can be accelerated effectively, and the energy gain are discussed.
基金supported by National Natural Science Foundation of China(Nos.11047152,11147005 and 11178002)The Natural Science Foundation of Jiangxi Province of China(Nos.2010GQW0048,20122BAB202003)
文摘The wake bubble expansion and contraction by adding a dense-plasma wall in the background plasma during the mode transition from laser wakefield to plasma wakefield accel- eration is investigated by particle-in-cell simulations. The electrons are injected continuously into the cavity until the lateral bubble size equals the inner diameter of the wall. The injected electron bunch from the laser wakefield acceleration (LWFA) scheme is quasi phase-stably accel- erated forward because of the longitudinal contraction of the bubble. After the laser pulse is depleted completely, the electron bunch generated from the LWFA scheme drives a plasma wake- field. The electrons remaining in the channel are trapped and accelerated by the plasma wakefield. Ultimately, two energetic electron bunches with a narrow energy spread and low emittance are obtained.
文摘The acceleration ability of electrons in SiO2 and ZnS was compared through the variation of emission intensity based on ZnS : Er electroluminescence during the reverse of polarity of sinusoidal voltage. In order to avoid the influence of work function of electrode, cathodal and anodal materials were ITO (indium tin oxide). The ratio of maximum emission intensity under positive and negative half period is 2.18. This result demonstrates that the electron acceleration ability of SiO2 is 2.18 times stronger than that of ZnS.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574097).
文摘The direct acceleration of electrons by using two linearly polarized crossed Bessel-Gaussian (BG) beams with equal frequency and amplitude in vacuum is proposed and studied. It is shown that two linearly polarized BG beams of the same order (0 or 1) with a π-rad phase difference have a resultant non-zero longitudinal electric field on the z-axis and can be used, in principle, to accelerate electrons.
基金中国科学院特别支持项目,国家自然科学基金,National High-Technology ICF Committee of China,the State Key Basic Research Special Foundation
文摘With the development of photocathode rf electron gun, electrons with high-brightness and mono-energy can be obtained easily. By numerically solving the relativistic equations of motion of an electron generated from this facility in laser fields modelled by a circular polarized Gaussian laser pulse, we find the electron can obtain high energy gain from the laser pulse. The corresponding acceleration distance for this electron driven by the ascending part of the laser pulse is much longer than the Rayleigh length, and the light amplitude experienced on the electron is very weak when the laser pulse overtakes the electron. The electron is accelerated effectively and the deceleration can be neglected.For intensities around 1019 W·μm2/cm2,an electron's energy gain near 0.1 GeV can be realized when its initial energy is 4.5 MeV, and the final velocity of the energetic electron is parallel with the propagation axis. The energy gain can be up to 1 GeV if the intensity is about 1021 W·μm2/cm2.The final energy gain of the electron as a function of its initial conditions and the parameters of the laser beam has also been discussed.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10875015,10834008,10963002the 973 Program under Grant No.2006CB806004Educational Commission of Jiangxi Province of China under Grant No.GJJ10052
文摘We present analytical studies of electron acceleration in the low-density preplasma of a thin solid target byan intense femtosecond laser pulse.Electrons in the preplasma are trapped and accelerated by the ponderomotive forceas well as the wake field.Two-dimensional particle-in-cell simulations show that when the laser pulse is stopped by thetarget,electrons trapped in the laser pules can be extracted and move forward inertially.The energetic electron bunchin the bubble is unaffected by the reflected pulse and passes through the target with small energy spread and emittance.There is an optimal preplasma density for the generation of the monoenergetic electron bunch if a laser pulse is given.The maximum electron energy is inverse proportion to the preplasma density.
基金supported by the National Natural Science Foundation of China (NSFC Grant Nos. 42104150, 42074187, 41774162, and 41704155)the Foundation of the National Key Laboratory of Electromagnetic Environment (Grant No. 6142403200303)+3 种基金the Chinese Academy of Sciences, Key Laboratory of Geospace Environmentthe University of Science & Technology of China (Grant No. GE2020-01)the Fundamental Research Funds for the Central Universities (Grant No. 2042021kf0020)the Excellent Youth Foundation of Hubei Provincial Natural Science Foundation (Grant No. 2019CFA054)
文摘In this study,we investigate the generation of parametric decay instability,Langmuir turbulence formation,and electron acceleration in ionospheric heating via a two-fluid model using the Fokker-Planck equation and Vlasov-Poisson system simulations.The simulation results of both the magnetofluid model and the kinetic model demonstrate the dynamics of electron acceleration.Further,the results of the Vlasov-Poisson simulations suggest the formation of electron holes in phase space at the same spatial scale as the Langmuir wave,which are shown to be related to electron acceleration.In addition,electron acceleration is enhanced through the extension of the wavenumber spectrum caused by strong Langmuir turbulence,leading to more electron holes in phase space.
基金supported by the National Natural Science Foundation of China(Grant Nos.41804159 and 41774169)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDJ-SSW-DQC010)。
文摘The magnetic merging process related to pairwise magnetic islands coalescence is investigated by two-dimensional particle-in-cell simulations with a guide field.Owing to the force of attraction between parallel currents within the initial magnetic islands,the magnetic islands begin to approach each other and merge into one big island.We find that this newly formed island is unstable and can be divided into two small magnetic islands spontaneously.Lastly,these two small islands merge again.We follow the time evolution of this process,in which the contributions of three mechanisms of electron acceleration at different stages,including the Fermi,parallel electric field,and betatron mechanisms,are studied with the guide center theory.
基金supported by the National Natural Science Foundation of China(Grant Nos.U1930108,12175018,12135001,12075030,and 11903006)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA25030700)。
文摘Relativistic magnetic reconnection(MR)driven by two ultra-intense lasers with different spot separation distances is simulated by a three-dimensional(3D)kinetic relativistic particle-in-cell(PIC)code.We find that changing the separation distance between two laser spots can lead to different magnetization parameters of the laser plasma environment.As the separation distance becomes larger,the magnetization parameterσbecomes smaller.The electrons are accelerated in these MR processes and their energy spectra can be fitted with double power-law spectra whose index will increase with increasing separation distance.Moreover,the collisionless shocks’contribution to energetic electrons is close to the magnetic reconnection contribution withσdecreasing,which results in a steeper electron energy spectrum.Basing on the3D outflow momentum configuration,the energetic electron spectra are recounted and their spectrum index is close to 1 in these three cases because the magnetization parameterσis very high in the 3D outflow area.
基金the National Natural Science Foundation of China(Grant Nos.11865014,11765017,11764039,11475027,11274255,and 11305132)the Natural Science Foundation of Gansu Province of China(Grant No.17JR5RA076)+2 种基金the Scientific Research Project of Gansu Higher Education of China(Grant No.2016A-005)the Natural Science Foundation of Education Department of Guizhou Province of China(Grant No.Qianjiaohe-KY-[2017]301)the Science and Technology Project of Guizhou Province of China(Grant No.Qiankehe-LH-[2017]7008).
文摘We study the dynamics of single electron in an inhomogeneous cylindrical plasma channel during the direct acceleration by linearly polarized chirped laser pulse.By adjusting the parameters of the chirped laser pulse and the plasma channel,we obtain the energy gain,trajectory,dephasing rate and unstable threshold of electron oscillation in the channel.The influences of the chirped factor and inhomogeneous plasma density distribution on the electron dynamics are discussed in depth.We find that the nonlinearly chirped laser pulse and the inhomogeneous plasma channel have strong coupled influence on the electron dynamics.The electron energy gain can be enhanced,the instability threshold of the electron oscillation can be lowered,and the acceleration length can be shortened by chirped laser,while the inhomogeneity of the plasma channel can reduce the amplitude of the chirped laser.