期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于运行规律和TICC算法的风电SCADA高维时序数据聚类方法
被引量:
6
1
作者
肖钊
邓杰文
+2 位作者
刘晓明
段书用
许守亮
《机械工程学报》
EI
CAS
CSCD
北大核心
2022年第23期196-207,共12页
针对大型风力发电机组高维SCADA时序数据的工况识别问题,结合风电机组运行规律和TICC算法,提出一种自动分割聚类方法。从高维的SCADA数据中选取风速、转速和桨距角等少量特定参数作为初始分割聚类对象,分析特定参数的运行规律,确定风电...
针对大型风力发电机组高维SCADA时序数据的工况识别问题,结合风电机组运行规律和TICC算法,提出一种自动分割聚类方法。从高维的SCADA数据中选取风速、转速和桨距角等少量特定参数作为初始分割聚类对象,分析特定参数的运行规律,确定风电机组理论的运行工况。选取一段特定参数的历史数据,利用TICC算法进行离线聚类分割,获得聚类的最优特征参数。将最优特征参数作为TICC算法的输入,对新的特定参数时间序列数据进行分类。最后根据特定参数时间序列的聚类结果,对未进行分割的SCADA时序数据进行聚类处理。选取某2.5 MW双馈风电机组的SCADA时间序列数据对方法进行验证,同时将所提出的方法与FCM算法、GMM算法、K-Means算法进行对比研究。实例验证和对比研究表明,所提的聚类方法充分融合理论知识和TICC算法的优点,可高效处理高维SCADA聚类分割问题,同时保证聚类结果与理论分析结果一致性。
展开更多
关键词
风电机组
SCADA数据
ticc算法
时间序列聚类
原文传递
题名
基于运行规律和TICC算法的风电SCADA高维时序数据聚类方法
被引量:
6
1
作者
肖钊
邓杰文
刘晓明
段书用
许守亮
机构
湖南科技大学机电工程学院
省部共建电工装备可靠性与智能化国家重点实验室(河北工业大学)
华电郑州机械设计研究院有限公司
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2022年第23期196-207,共12页
基金
国家自然科学基金(51905165,51875199)
河北省自然科学基金创新群体项目(E2020202142)
国家重点研发计划“国家质量基础设施体系”专项(2022YFF0608702)。
文摘
针对大型风力发电机组高维SCADA时序数据的工况识别问题,结合风电机组运行规律和TICC算法,提出一种自动分割聚类方法。从高维的SCADA数据中选取风速、转速和桨距角等少量特定参数作为初始分割聚类对象,分析特定参数的运行规律,确定风电机组理论的运行工况。选取一段特定参数的历史数据,利用TICC算法进行离线聚类分割,获得聚类的最优特征参数。将最优特征参数作为TICC算法的输入,对新的特定参数时间序列数据进行分类。最后根据特定参数时间序列的聚类结果,对未进行分割的SCADA时序数据进行聚类处理。选取某2.5 MW双馈风电机组的SCADA时间序列数据对方法进行验证,同时将所提出的方法与FCM算法、GMM算法、K-Means算法进行对比研究。实例验证和对比研究表明,所提的聚类方法充分融合理论知识和TICC算法的优点,可高效处理高维SCADA聚类分割问题,同时保证聚类结果与理论分析结果一致性。
关键词
风电机组
SCADA数据
ticc算法
时间序列聚类
Keywords
wind turbine
SCADA data
ticc
algorithm
time series clustering
分类号
TM614 [电气工程—电力系统及自动化]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于运行规律和TICC算法的风电SCADA高维时序数据聚类方法
肖钊
邓杰文
刘晓明
段书用
许守亮
《机械工程学报》
EI
CAS
CSCD
北大核心
2022
6
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部