期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于运行规律和TICC算法的风电SCADA高维时序数据聚类方法 被引量:6
1
作者 肖钊 邓杰文 +2 位作者 刘晓明 段书用 许守亮 《机械工程学报》 EI CAS CSCD 北大核心 2022年第23期196-207,共12页
针对大型风力发电机组高维SCADA时序数据的工况识别问题,结合风电机组运行规律和TICC算法,提出一种自动分割聚类方法。从高维的SCADA数据中选取风速、转速和桨距角等少量特定参数作为初始分割聚类对象,分析特定参数的运行规律,确定风电... 针对大型风力发电机组高维SCADA时序数据的工况识别问题,结合风电机组运行规律和TICC算法,提出一种自动分割聚类方法。从高维的SCADA数据中选取风速、转速和桨距角等少量特定参数作为初始分割聚类对象,分析特定参数的运行规律,确定风电机组理论的运行工况。选取一段特定参数的历史数据,利用TICC算法进行离线聚类分割,获得聚类的最优特征参数。将最优特征参数作为TICC算法的输入,对新的特定参数时间序列数据进行分类。最后根据特定参数时间序列的聚类结果,对未进行分割的SCADA时序数据进行聚类处理。选取某2.5 MW双馈风电机组的SCADA时间序列数据对方法进行验证,同时将所提出的方法与FCM算法、GMM算法、K-Means算法进行对比研究。实例验证和对比研究表明,所提的聚类方法充分融合理论知识和TICC算法的优点,可高效处理高维SCADA聚类分割问题,同时保证聚类结果与理论分析结果一致性。 展开更多
关键词 风电机组 SCADA数据 ticc算法 时间序列聚类
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部