期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融合TLD框架的DSST实时目标跟踪改进算法 被引量:3
1
作者 黄浩淼 张江 +1 位作者 张晶 保峻嵘 《计算机工程与科学》 CSCD 北大核心 2020年第9期1587-1598,共12页
针对目标快速运动导致的图像模糊,使DSST算法难以区分目标与背景信息,滤波器在训练阶段循环移位采集密集样本容易产生边界效应,导致跟踪漂移的问题,提出了一种融合TLD框架的DSST实时目标跟踪改进算法(TLD-DSST)。改进DSST算法的位置滤波... 针对目标快速运动导致的图像模糊,使DSST算法难以区分目标与背景信息,滤波器在训练阶段循环移位采集密集样本容易产生边界效应,导致跟踪漂移的问题,提出了一种融合TLD框架的DSST实时目标跟踪改进算法(TLD-DSST)。改进DSST算法的位置滤波器,通过空间正则化的方法加入权重系数矩阵,降低非目标区域的响应,对快速运动目标进行粗定位;与此同时,引入朴素贝叶斯分类器改进TLD检测器,提高检测器对目标与背景信息的区分能力,然后将DSST目标响应的位置与TLD检测器得到的目标区域进行最优相似性匹配,得到精确定位的结果。通过TLD检测器正负样本在线更新机制,不断优化算法的鲁棒性。实验结果表明,TLD-DSST算法对于快速运动等复杂情景下的目标跟踪,具有很高的精确度和成功率。 展开更多
关键词 tld检测器 边界效应 空间正则化 最优相似性匹配 朴素贝叶斯分类器
下载PDF
A robust object tracking framework based on a reliable point assignment algorithm 被引量:2
2
作者 Rong-feng ZHANG Ting DENG +2 位作者 Gui-hong WANG Jing-lun SHI Quan-sheng GUAN 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第4期545-558,共14页
Visual tracking, which has been widely used in many vision fields, has been one of the most active research topics in computer vision in recent years. However, there are still challenges in visual tracking, such as il... Visual tracking, which has been widely used in many vision fields, has been one of the most active research topics in computer vision in recent years. However, there are still challenges in visual tracking, such as illumination change, object occlu- sion, and appearance deformation. To overcome these difficulties, a reliable point assignment (RPA) algorithm based on wavelet transform is proposed. The reliable points are obtained by searching the location that holds local maximal wavelet coefficients. Since the local maximal wavelet coefficients indicate high variation in the image, the reliable points are robust against image noise, illumination change, and appearance deformation. Moreover, a Kalman filter is applied to the detection step to speed up the detection processing and reduce false detection. Finally, the proposed RPA is integrated into the tracking-learning-detection (TLD) framework with the Kalman filter, which not only improves the tracking precision, but also reduces the false detections. Experimental results showed that the new framework outperforms TLD and kernelized correlation filters with respect to precision, f-measure, and average overlap in percent. 展开更多
关键词 Local maximal wavelet coefficients Reliable point assignment Object tracking Tracking learning detection tld Kalman filter
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部