Ramulus Cinnamomi (RC), a traditional Chinese herb, has been used to attenuate inflammatory responses. The purpose of this study was to investigate the effect of RC extract on lipopolysaccharide (LPS)-induced neur...Ramulus Cinnamomi (RC), a traditional Chinese herb, has been used to attenuate inflammatory responses. The purpose of this study was to investigate the effect of RC extract on lipopolysaccharide (LPS)-induced neuroinflammation in BV2 microglial cells and the underlying mechanisms involved. BV2 cells were incubated with normal medium (control group), LPS, LPS plus 30 pg/mL RC extract, or LPS plus 100 pg/mL RC extract. The BV2 cell morphology was observed under an optical microscope and cell viability was detected by MTT assay. Nitric oxide level in BV2 cells was detected using Griess regents, and the levels of interleukin-6, interleukin-1 β, and tumor necrosis factor u in BV2 cells were determined by ELISA. The expression levels of cyclooxygenase-2, Toll-like receptor 4 and myeloid differentiation factor 88 proteins were detected by western blot assay. Compared with the LPS group, both 30 and 100 μg/mL RC extract had no significant effect on the viability of BV2 cells. The levels of nitric oxide, interleukin-6, interleukin-1β and tumor necrosis factor ct in BV2 cells were all significantly increased after LPS induction, and the levels were significantly reversed after treatment with 30 and 100 μg/mL RC extract. Furthermore, RC extract significantly inhibited the protein expression levels of cyclooxygenase-2, Toll-like receptor 4 and myeloid differentiation factor 88 in LPS-induced BV2 cells. Our findings suggest that RC extract alleviates neuroinflammation by downregulating the TLR4/MyD88 signaling pathway.展开更多
Phycocyanin (PC), a natural algal protein, is reported for having anti-oxidant and antiinfl ammatory properties. We investigated its ability to attenuate lung infl ammation in mice subjected to X-ray radiation. Male C...Phycocyanin (PC), a natural algal protein, is reported for having anti-oxidant and antiinfl ammatory properties. We investigated its ability to attenuate lung infl ammation in mice subjected to X-ray radiation. Male C57BL/6 mice were assigned to the control, total body irradiation, PC pretreatment, and PC treatment groups. Mice in the PC pretreatment group were gavaged with 200 mg/kg PC for 7 consecutive days before irradiation, and those in the PC treatment group were gavaged with 200 mg/kg PC for 7 consecutive days after irradiation. Lungs were collected on Day 7 after irradiation exposure. Hematoxylin and eosin staining of mouse lung sections showed considerable infl ammation damage 7 days after irradiation compared with the control lung but a reduction in pathological injury in the PC treatment group. Pretreatment or treatment with PC signifi cantly decreased levels of interleukin-6 and tumor necrosis factor-α in the lung, and also increased the relative mRNA expression of superoxide dismutase and glutathione. In vivo, PC signifi cantly reduced the expression of Toll-like receptor TLR2, myeloid diff erentiation primary response Myd88, and nuclear factor NF-κB, at both the transcriptional and translation level. Taken together, these data indicated that PC attenuated lung infl ammatory damage induced by radiation by blocking the TLR2- MyD88-NF-κB signaling pathway. Therefore, PC could be a protective agent against radiation-induced infl ammatory damage in normal tissues.展开更多
AIM To study the role and the possible mechanism of β-arrestin 2 in lipopolysaccharide(LPS)-induced liver injury in vivo and in vitro.METHODS Male β-arrestin 2^(+/+) and β-arrestin 2^(-/-)C57 BL/6 J mice were used ...AIM To study the role and the possible mechanism of β-arrestin 2 in lipopolysaccharide(LPS)-induced liver injury in vivo and in vitro.METHODS Male β-arrestin 2^(+/+) and β-arrestin 2^(-/-)C57 BL/6 J mice were used for in vivo experiments, and the mouse macrophage cell line RAW264.7 was used for in vitro experiments. The animal model was established via intraperitoneal injection of LPS or physiological sodium chloride solution. Blood samples and liver tissues were collected to analyze liver injury and levels of pro-inflammatory cytokines. Cultured cell extracts were collected to analyze the production of pro-inflammatory cytokines and expression of key molecules involved in the TLR4/NF-κB signaling pathway.RESULTS Compared with wild-type mice, the β-arrestin 2 knockout mice displayed more severe LPS-induced liver injury and significantly higher levels of proinflammatory cytokines, including interleukin(IL)-1β, IL-6, tumor necrosis factor(TNF)-α, and IL-10. Compared with the control group, pro-inflammatory cytokines(including IL-1β, IL-6, TNF-α, and IL-10) produced by RAW264.7 cells in the β-arrestin 2 si RNA group were significantly increased at 6 h after treatment with LPS. Further, key molecules involved in the TLR4/NF-κB signaling pathway, including phosphoIκBα and phosho-p65, were upregulated.CONCLUSION β-arrestin 2 can protect liver tissue from LPS-induced injury via inhibition of TLR4/NF-κB signaling pathwaymediated inflammation.展开更多
Objective:To investigate the clinical efficacy of dexmedetomidine in the regulation of TLR4/My D88/NF-κB in the prevention of paroxysmal sympathetic over-excitation (PSH) in patients with severe head injury. Methods:...Objective:To investigate the clinical efficacy of dexmedetomidine in the regulation of TLR4/My D88/NF-κB in the prevention of paroxysmal sympathetic over-excitation (PSH) in patients with severe head injury. Methods:One hundred patients with severe head injury who were admitted to our hospital from September 2016 to May 2019 were enrolled. The randomized digital table method was divided into 50 cases in the study group and the control group. Patients in the study group were given dexmedetomidine at a dose of 1.0 μg/kg before anesthesia induction, followed by infusion at 0.4 μg / (kg·h), and the control group was injected with the same amount of normal saline. The incidence of PSH, clinical symptoms, imaging findings, mechanical ventilation time, tracheal intubation/incision duration, ICU hospitalization time, total length of hospital stay, and GCS scores three months after discharge were compared between the two groups. At the same time, the fluorescence intensity, TLR4, NF-κB expression level and tumor necrosis factor-α (TNF-α) expression levels in peripheral blood CD14+ monocytes of the two groups were detected. Results:The incidence of PSH was significantly lower in the study group than in the control group at 7 and 3 months (P<0.05). The total length of hospital stay, duration of ICU hospitalization, intraoperative tracheotomy, and mechanical ventilation time were significantly lower in the study group than in the control group. And the GCS score was higher than the control group, and the difference was statistically significant (P<0.05). In addition, the imaging results showed that there were some differences in the location of imaging lesions between the two groups. The proportion of lesions in the ventricular system and surrounding areas was higher in the control group than in the study group (P<0.05). And the T14-T3 CD14+ PBMC MyD88 fluorescence intensity, TLR4 and NK-κB positive expression rate were significantly higher than those of T0 (P<0.05), but the MyD88 fluorescence intensity, TLR4 and NK-κB positive expression rate in the study group were significantly lower than those in the control group at T1~T3 (P<0.05). The levels of serum TNF-α in T1~T3 groups were significantly higher than those in T0 (P<0.05), but the levels of serum TNF-α in T1~T3 in the study group were significantly lower than those in the control group (P< 0.05). Conclusions:Dexmedetomidine can reduce the oxidative stress response in patients with severe head injury by inhibiting TLR4/My D88/NF-κB signaling pathway, thus effectively reducing the risk of PSH and improving the prognosis of patients.展开更多
基金supported by a grant from the National Natural Science Foundation of China,No.81473383a grant from the Medical and Health Innovation Project of Chinese Academy of Medical Sciences,No.2016-I2M-3-007a grant from Key Project of New-Drugs Creation of Science and Technology of China,No.2012ZX09103101-078 and 2017ZX09101003-003-019
文摘Ramulus Cinnamomi (RC), a traditional Chinese herb, has been used to attenuate inflammatory responses. The purpose of this study was to investigate the effect of RC extract on lipopolysaccharide (LPS)-induced neuroinflammation in BV2 microglial cells and the underlying mechanisms involved. BV2 cells were incubated with normal medium (control group), LPS, LPS plus 30 pg/mL RC extract, or LPS plus 100 pg/mL RC extract. The BV2 cell morphology was observed under an optical microscope and cell viability was detected by MTT assay. Nitric oxide level in BV2 cells was detected using Griess regents, and the levels of interleukin-6, interleukin-1 β, and tumor necrosis factor u in BV2 cells were determined by ELISA. The expression levels of cyclooxygenase-2, Toll-like receptor 4 and myeloid differentiation factor 88 proteins were detected by western blot assay. Compared with the LPS group, both 30 and 100 μg/mL RC extract had no significant effect on the viability of BV2 cells. The levels of nitric oxide, interleukin-6, interleukin-1β and tumor necrosis factor ct in BV2 cells were all significantly increased after LPS induction, and the levels were significantly reversed after treatment with 30 and 100 μg/mL RC extract. Furthermore, RC extract significantly inhibited the protein expression levels of cyclooxygenase-2, Toll-like receptor 4 and myeloid differentiation factor 88 in LPS-induced BV2 cells. Our findings suggest that RC extract alleviates neuroinflammation by downregulating the TLR4/MyD88 signaling pathway.
基金Supported by the National Key Research and Development Program of China(No.2018YFD0901102)
文摘Phycocyanin (PC), a natural algal protein, is reported for having anti-oxidant and antiinfl ammatory properties. We investigated its ability to attenuate lung infl ammation in mice subjected to X-ray radiation. Male C57BL/6 mice were assigned to the control, total body irradiation, PC pretreatment, and PC treatment groups. Mice in the PC pretreatment group were gavaged with 200 mg/kg PC for 7 consecutive days before irradiation, and those in the PC treatment group were gavaged with 200 mg/kg PC for 7 consecutive days after irradiation. Lungs were collected on Day 7 after irradiation exposure. Hematoxylin and eosin staining of mouse lung sections showed considerable infl ammation damage 7 days after irradiation compared with the control lung but a reduction in pathological injury in the PC treatment group. Pretreatment or treatment with PC signifi cantly decreased levels of interleukin-6 and tumor necrosis factor-α in the lung, and also increased the relative mRNA expression of superoxide dismutase and glutathione. In vivo, PC signifi cantly reduced the expression of Toll-like receptor TLR2, myeloid diff erentiation primary response Myd88, and nuclear factor NF-κB, at both the transcriptional and translation level. Taken together, these data indicated that PC attenuated lung infl ammatory damage induced by radiation by blocking the TLR2- MyD88-NF-κB signaling pathway. Therefore, PC could be a protective agent against radiation-induced infl ammatory damage in normal tissues.
基金Supported by the National Natural Science Foundation of China,No.81470848the Breeding Foundation for Young Pioneers’Research of Sun Yat-sen University,No.14ykpy27
文摘AIM To study the role and the possible mechanism of β-arrestin 2 in lipopolysaccharide(LPS)-induced liver injury in vivo and in vitro.METHODS Male β-arrestin 2^(+/+) and β-arrestin 2^(-/-)C57 BL/6 J mice were used for in vivo experiments, and the mouse macrophage cell line RAW264.7 was used for in vitro experiments. The animal model was established via intraperitoneal injection of LPS or physiological sodium chloride solution. Blood samples and liver tissues were collected to analyze liver injury and levels of pro-inflammatory cytokines. Cultured cell extracts were collected to analyze the production of pro-inflammatory cytokines and expression of key molecules involved in the TLR4/NF-κB signaling pathway.RESULTS Compared with wild-type mice, the β-arrestin 2 knockout mice displayed more severe LPS-induced liver injury and significantly higher levels of proinflammatory cytokines, including interleukin(IL)-1β, IL-6, tumor necrosis factor(TNF)-α, and IL-10. Compared with the control group, pro-inflammatory cytokines(including IL-1β, IL-6, TNF-α, and IL-10) produced by RAW264.7 cells in the β-arrestin 2 si RNA group were significantly increased at 6 h after treatment with LPS. Further, key molecules involved in the TLR4/NF-κB signaling pathway, including phosphoIκBα and phosho-p65, were upregulated.CONCLUSION β-arrestin 2 can protect liver tissue from LPS-induced injury via inhibition of TLR4/NF-κB signaling pathwaymediated inflammation.
基金Nanchong city school cooperative research project in 2018(No.18SXHZ0445).
文摘Objective:To investigate the clinical efficacy of dexmedetomidine in the regulation of TLR4/My D88/NF-κB in the prevention of paroxysmal sympathetic over-excitation (PSH) in patients with severe head injury. Methods:One hundred patients with severe head injury who were admitted to our hospital from September 2016 to May 2019 were enrolled. The randomized digital table method was divided into 50 cases in the study group and the control group. Patients in the study group were given dexmedetomidine at a dose of 1.0 μg/kg before anesthesia induction, followed by infusion at 0.4 μg / (kg·h), and the control group was injected with the same amount of normal saline. The incidence of PSH, clinical symptoms, imaging findings, mechanical ventilation time, tracheal intubation/incision duration, ICU hospitalization time, total length of hospital stay, and GCS scores three months after discharge were compared between the two groups. At the same time, the fluorescence intensity, TLR4, NF-κB expression level and tumor necrosis factor-α (TNF-α) expression levels in peripheral blood CD14+ monocytes of the two groups were detected. Results:The incidence of PSH was significantly lower in the study group than in the control group at 7 and 3 months (P<0.05). The total length of hospital stay, duration of ICU hospitalization, intraoperative tracheotomy, and mechanical ventilation time were significantly lower in the study group than in the control group. And the GCS score was higher than the control group, and the difference was statistically significant (P<0.05). In addition, the imaging results showed that there were some differences in the location of imaging lesions between the two groups. The proportion of lesions in the ventricular system and surrounding areas was higher in the control group than in the study group (P<0.05). And the T14-T3 CD14+ PBMC MyD88 fluorescence intensity, TLR4 and NK-κB positive expression rate were significantly higher than those of T0 (P<0.05), but the MyD88 fluorescence intensity, TLR4 and NK-κB positive expression rate in the study group were significantly lower than those in the control group at T1~T3 (P<0.05). The levels of serum TNF-α in T1~T3 groups were significantly higher than those in T0 (P<0.05), but the levels of serum TNF-α in T1~T3 in the study group were significantly lower than those in the control group (P< 0.05). Conclusions:Dexmedetomidine can reduce the oxidative stress response in patients with severe head injury by inhibiting TLR4/My D88/NF-κB signaling pathway, thus effectively reducing the risk of PSH and improving the prognosis of patients.