Ramulus Cinnamomi (RC), a traditional Chinese herb, has been used to attenuate inflammatory responses. The purpose of this study was to investigate the effect of RC extract on lipopolysaccharide (LPS)-induced neur...Ramulus Cinnamomi (RC), a traditional Chinese herb, has been used to attenuate inflammatory responses. The purpose of this study was to investigate the effect of RC extract on lipopolysaccharide (LPS)-induced neuroinflammation in BV2 microglial cells and the underlying mechanisms involved. BV2 cells were incubated with normal medium (control group), LPS, LPS plus 30 pg/mL RC extract, or LPS plus 100 pg/mL RC extract. The BV2 cell morphology was observed under an optical microscope and cell viability was detected by MTT assay. Nitric oxide level in BV2 cells was detected using Griess regents, and the levels of interleukin-6, interleukin-1 β, and tumor necrosis factor u in BV2 cells were determined by ELISA. The expression levels of cyclooxygenase-2, Toll-like receptor 4 and myeloid differentiation factor 88 proteins were detected by western blot assay. Compared with the LPS group, both 30 and 100 μg/mL RC extract had no significant effect on the viability of BV2 cells. The levels of nitric oxide, interleukin-6, interleukin-1β and tumor necrosis factor ct in BV2 cells were all significantly increased after LPS induction, and the levels were significantly reversed after treatment with 30 and 100 μg/mL RC extract. Furthermore, RC extract significantly inhibited the protein expression levels of cyclooxygenase-2, Toll-like receptor 4 and myeloid differentiation factor 88 in LPS-induced BV2 cells. Our findings suggest that RC extract alleviates neuroinflammation by downregulating the TLR4/MyD88 signaling pathway.展开更多
Phycocyanin (PC), a natural algal protein, is reported for having anti-oxidant and antiinfl ammatory properties. We investigated its ability to attenuate lung infl ammation in mice subjected to X-ray radiation. Male C...Phycocyanin (PC), a natural algal protein, is reported for having anti-oxidant and antiinfl ammatory properties. We investigated its ability to attenuate lung infl ammation in mice subjected to X-ray radiation. Male C57BL/6 mice were assigned to the control, total body irradiation, PC pretreatment, and PC treatment groups. Mice in the PC pretreatment group were gavaged with 200 mg/kg PC for 7 consecutive days before irradiation, and those in the PC treatment group were gavaged with 200 mg/kg PC for 7 consecutive days after irradiation. Lungs were collected on Day 7 after irradiation exposure. Hematoxylin and eosin staining of mouse lung sections showed considerable infl ammation damage 7 days after irradiation compared with the control lung but a reduction in pathological injury in the PC treatment group. Pretreatment or treatment with PC signifi cantly decreased levels of interleukin-6 and tumor necrosis factor-α in the lung, and also increased the relative mRNA expression of superoxide dismutase and glutathione. In vivo, PC signifi cantly reduced the expression of Toll-like receptor TLR2, myeloid diff erentiation primary response Myd88, and nuclear factor NF-κB, at both the transcriptional and translation level. Taken together, these data indicated that PC attenuated lung infl ammatory damage induced by radiation by blocking the TLR2- MyD88-NF-κB signaling pathway. Therefore, PC could be a protective agent against radiation-induced infl ammatory damage in normal tissues.展开更多
Objective: To test whether IL-1 RI/My088-TIR mimic AS-1 can work as a new compound that targeted at blocking MyD88- dependent signaling pathway, we investigated the physical structure and biological function of AS-1....Objective: To test whether IL-1 RI/My088-TIR mimic AS-1 can work as a new compound that targeted at blocking MyD88- dependent signaling pathway, we investigated the physical structure and biological function of AS-1. Methods:The crystallographic structure of AS-1 was examined by 1^H nuclear magnetic resonance. The toxicity of AS-1 was measured with Methyl thiazolyl tetrazolium (MTT) assay. The effect of AS-1 on phosphorylation state of p38 MAPK and IRAK-1 was observed with Western blot. Results:The crystallographic details of AS-1 demonstrated that it was a tri-peptide sequence[(F/Y)-(V/L/I)-(P/G)] of the IL-1R I -TIR domain BBloop. No toxicity of AS-1 was shown to HEK 293A cells. The phosphorylation of p38 MAPK, induced by IL-1β significantly increased from those in the control group. AS-1 significantly reduced the phosphorylation of p38 MAPK induced by IL-1β. IL-1β increased the phosphorylation of IRAK-1 significantly, which was prevented by AS-1. Conclusion:AS-1 is a competitive mimic between IL-1R I-TIR and MyD88-TIR domain, which most likely interferes with MyD88-dependent signaling pathway.展开更多
Objective:To investigate the clinical efficacy of dexmedetomidine in the regulation of TLR4/My D88/NF-κB in the prevention of paroxysmal sympathetic over-excitation (PSH) in patients with severe head injury. Methods:...Objective:To investigate the clinical efficacy of dexmedetomidine in the regulation of TLR4/My D88/NF-κB in the prevention of paroxysmal sympathetic over-excitation (PSH) in patients with severe head injury. Methods:One hundred patients with severe head injury who were admitted to our hospital from September 2016 to May 2019 were enrolled. The randomized digital table method was divided into 50 cases in the study group and the control group. Patients in the study group were given dexmedetomidine at a dose of 1.0 μg/kg before anesthesia induction, followed by infusion at 0.4 μg / (kg·h), and the control group was injected with the same amount of normal saline. The incidence of PSH, clinical symptoms, imaging findings, mechanical ventilation time, tracheal intubation/incision duration, ICU hospitalization time, total length of hospital stay, and GCS scores three months after discharge were compared between the two groups. At the same time, the fluorescence intensity, TLR4, NF-κB expression level and tumor necrosis factor-α (TNF-α) expression levels in peripheral blood CD14+ monocytes of the two groups were detected. Results:The incidence of PSH was significantly lower in the study group than in the control group at 7 and 3 months (P<0.05). The total length of hospital stay, duration of ICU hospitalization, intraoperative tracheotomy, and mechanical ventilation time were significantly lower in the study group than in the control group. And the GCS score was higher than the control group, and the difference was statistically significant (P<0.05). In addition, the imaging results showed that there were some differences in the location of imaging lesions between the two groups. The proportion of lesions in the ventricular system and surrounding areas was higher in the control group than in the study group (P<0.05). And the T14-T3 CD14+ PBMC MyD88 fluorescence intensity, TLR4 and NK-κB positive expression rate were significantly higher than those of T0 (P<0.05), but the MyD88 fluorescence intensity, TLR4 and NK-κB positive expression rate in the study group were significantly lower than those in the control group at T1~T3 (P<0.05). The levels of serum TNF-α in T1~T3 groups were significantly higher than those in T0 (P<0.05), but the levels of serum TNF-α in T1~T3 in the study group were significantly lower than those in the control group (P< 0.05). Conclusions:Dexmedetomidine can reduce the oxidative stress response in patients with severe head injury by inhibiting TLR4/My D88/NF-κB signaling pathway, thus effectively reducing the risk of PSH and improving the prognosis of patients.展开更多
OBJECTIVE The greatest challenge in chemotherapy of ischemic stroke is the construction a suitable delivery system to overcome the poor physicochemical properties of drug and its low permeability across the blood brai...OBJECTIVE The greatest challenge in chemotherapy of ischemic stroke is the construction a suitable delivery system to overcome the poor physicochemical properties of drug and its low permeability across the blood brain barrier(BBB).METHODS In the present study,dendrimer,polyamidoamine(PAMAM),was synthesized as the nano-drug carriers.Angiopep-2,which has been proved excellent ability to cross the BBB,was exploited as the targeting ligand to conjugate PAMAM via bifunctional polyethylene glycol(PEG).Then scutellarin(STA)was encapsulated into the functionalized nanoparticles(NPs)to formulate Angiopep-2 modified STA-loaded PEG-PAMAM NPs.Ischemic stroke model was established to evaluate the treatment efficacy and protective mechanism of Angiopep-2-STA-PEG-PAMAM NPs.RESULTS The pharmacokinetics and biodistribu-tion demonstrated that Angiopep-2-STA-PEG-PAMAM NPs exhibited significantly higher plasma concentration from 1 h to 10 h after intravenous administration and improve accumulation in brain(4.7-fold)compared with STA solution.Moreover,prolonged elimination half-life(4.8-fold)and lower clearance(3.4-fold)were observed.The brain uptake study of 6-coumarin confirmed that Angiopep-2-PEG-PAMAM NPs possessed better brain targeting efficacy(3.2-fold)than PEG-PAMAM NPs.Angiopep-2-STA-PEG-PAMAM NPs obviously ameliorated infarct volume,neurological deficit,histopathological severity and neuronal apoptosis.In addition,Angiopep-2-STA-PEG-PAMAM NPs markedly inhibited the calcium content and the levels of IL-12p40,IL-13,IL-17 and IL-23.Furthermore,Angiopep-2-STA-PEG-PAMAM NPs significantly decreased the m RNA and protein expressions of HMGB1,TLR2,TLR4,TLR5,My D88,TRIF,TRAM,IRAK-4,TRAF6,IкBα,IKKβand NF-кBp65.CONCLUSION The results suggested that Angiopep-2modified scutellarin-loaded PEG-PAMAM nanocarriers possessed remarkable neuroprotective effects on ischemic stroke through modulation of inflammatory cascades and HMGB1/TLRs/MyD 88-induced NF-κB activation pathways.展开更多
[Objectives]To conduct bioinformatic analysis and experimental verification of Qingjie Huagong Decoction(QJHGD)on caerulein-induced inflammatory response in severe acute pancreatitis(SAP)model rats based on TLR4/NF-κ...[Objectives]To conduct bioinformatic analysis and experimental verification of Qingjie Huagong Decoction(QJHGD)on caerulein-induced inflammatory response in severe acute pancreatitis(SAP)model rats based on TLR4/NF-κB/MyD88 pathway.[Methods]The effective component groups and potential targets of QJHGD were collected by the network pharmacology method.A drug-component-target network was constructed.The GO and KEGG of targets were enriched and analyzed with the aid of Metascape database,and the target pathway related to SAP inflammation was screened.The SAP rat model was established by caerulein combined with lipopolysaccharide,and QJHGD was intragastrically administered.Pancreatic tissue was observed by HE staining.In addition,enzyme-linked immunosorbent assay and immunohistochemistry were used to verify the anti-inflammatory effect of QJHGD on SAP rats and its regulatory effect on TLR4/NF-κB/MyD88 target pathway.[Results]A total of 105 active components of QJHGD and 148 key targets of SAP were predicted and screened;KEGG was enriched in 320 different pathways including toll-like receptor and NF-κB classical pathways.Animal experiment verified that QJHGD reduced serum amylase,serum lipase activity,IL-6,TNF-αlevels in SAP rats;HE staining showed the effect of QJHGD on the pathological changes of pancreas,and QJHGD inhibited the positive expression of key proteins of TLR4,NF-κB and MyD88 in the inflammatory transduction pathway.[Conclusions]The mechanism of QJHGD improving pancreatic injury in SAP rats may be related to down-regulating the expression of key proteins in the TLR4/NF-κB/MyD88 pathway.展开更多
Objective: To study the correlation of MyD88 expression in peripheral blood and placenta with the inflammatory response and insulin signal transduction in the placenta of patients with gestational diabetes mellitus (G...Objective: To study the correlation of MyD88 expression in peripheral blood and placenta with the inflammatory response and insulin signal transduction in the placenta of patients with gestational diabetes mellitus (GDM). Methods: The patients with GDM and healthy pregnant women who accepted antenatal care and gave birth in Guangyuan First People's Hospital between March 2015 and June 2017 were selected as the research subjects and enrolled in the GDM group and control group for the study respectively;the peripheral blood was collected before delivery to determine the MyD88 mRNA expression, and the placental tissue was collected after delivery to determine the mRNA expression of MyD88, inflammatory response molecules and insulin signal transduction molecules. Results: MyD88 mRNA expression levels in the peripheral blood and placenta of GDM group were significantly higher than those of control group, and the MyD88 mRNA expression in the peripheral blood was positively correlated with the MyD88 mRNA expression in the placenta;IL-1β, IL-6, RBP4, Chemerin, Resistin and PTP1B mRNA expression levels in the placenta of GDM group were significantly higher than those of control group whereas IRS1, ISR2, p-PI3K and GLUT4 protein expression levels were significantly lower than those of control group;IL-1β, IL-6, RBP4, Chemerin, Resistin and PTP1B mRNA expression levels in the placenta of GDM group of patients with high MyD88 expression were significantly higher than those of patients with low MyD88 expression whereas IRS1, ISR2, p-PI3K and GLUT4 protein expression levels were significantly lower than those of patients with low MyD88 expression. Conclusion:The expression of MyD88 in peripheral blood and placenta increase in patients with GDM and the change of MyD88 expression in peripheral blood could reflect the abnormality of inflammatory response and insulin signal transduction in the placenta.展开更多
基金supported by a grant from the National Natural Science Foundation of China,No.81473383a grant from the Medical and Health Innovation Project of Chinese Academy of Medical Sciences,No.2016-I2M-3-007a grant from Key Project of New-Drugs Creation of Science and Technology of China,No.2012ZX09103101-078 and 2017ZX09101003-003-019
文摘Ramulus Cinnamomi (RC), a traditional Chinese herb, has been used to attenuate inflammatory responses. The purpose of this study was to investigate the effect of RC extract on lipopolysaccharide (LPS)-induced neuroinflammation in BV2 microglial cells and the underlying mechanisms involved. BV2 cells were incubated with normal medium (control group), LPS, LPS plus 30 pg/mL RC extract, or LPS plus 100 pg/mL RC extract. The BV2 cell morphology was observed under an optical microscope and cell viability was detected by MTT assay. Nitric oxide level in BV2 cells was detected using Griess regents, and the levels of interleukin-6, interleukin-1 β, and tumor necrosis factor u in BV2 cells were determined by ELISA. The expression levels of cyclooxygenase-2, Toll-like receptor 4 and myeloid differentiation factor 88 proteins were detected by western blot assay. Compared with the LPS group, both 30 and 100 μg/mL RC extract had no significant effect on the viability of BV2 cells. The levels of nitric oxide, interleukin-6, interleukin-1β and tumor necrosis factor ct in BV2 cells were all significantly increased after LPS induction, and the levels were significantly reversed after treatment with 30 and 100 μg/mL RC extract. Furthermore, RC extract significantly inhibited the protein expression levels of cyclooxygenase-2, Toll-like receptor 4 and myeloid differentiation factor 88 in LPS-induced BV2 cells. Our findings suggest that RC extract alleviates neuroinflammation by downregulating the TLR4/MyD88 signaling pathway.
基金Supported by the National Key Research and Development Program of China(No.2018YFD0901102)
文摘Phycocyanin (PC), a natural algal protein, is reported for having anti-oxidant and antiinfl ammatory properties. We investigated its ability to attenuate lung infl ammation in mice subjected to X-ray radiation. Male C57BL/6 mice were assigned to the control, total body irradiation, PC pretreatment, and PC treatment groups. Mice in the PC pretreatment group were gavaged with 200 mg/kg PC for 7 consecutive days before irradiation, and those in the PC treatment group were gavaged with 200 mg/kg PC for 7 consecutive days after irradiation. Lungs were collected on Day 7 after irradiation exposure. Hematoxylin and eosin staining of mouse lung sections showed considerable infl ammation damage 7 days after irradiation compared with the control lung but a reduction in pathological injury in the PC treatment group. Pretreatment or treatment with PC signifi cantly decreased levels of interleukin-6 and tumor necrosis factor-α in the lung, and also increased the relative mRNA expression of superoxide dismutase and glutathione. In vivo, PC signifi cantly reduced the expression of Toll-like receptor TLR2, myeloid diff erentiation primary response Myd88, and nuclear factor NF-κB, at both the transcriptional and translation level. Taken together, these data indicated that PC attenuated lung infl ammatory damage induced by radiation by blocking the TLR2- MyD88-NF-κB signaling pathway. Therefore, PC could be a protective agent against radiation-induced infl ammatory damage in normal tissues.
基金This study was supported by the National Natural Science Foundation of China(No.30571842)
文摘Objective: To test whether IL-1 RI/My088-TIR mimic AS-1 can work as a new compound that targeted at blocking MyD88- dependent signaling pathway, we investigated the physical structure and biological function of AS-1. Methods:The crystallographic structure of AS-1 was examined by 1^H nuclear magnetic resonance. The toxicity of AS-1 was measured with Methyl thiazolyl tetrazolium (MTT) assay. The effect of AS-1 on phosphorylation state of p38 MAPK and IRAK-1 was observed with Western blot. Results:The crystallographic details of AS-1 demonstrated that it was a tri-peptide sequence[(F/Y)-(V/L/I)-(P/G)] of the IL-1R I -TIR domain BBloop. No toxicity of AS-1 was shown to HEK 293A cells. The phosphorylation of p38 MAPK, induced by IL-1β significantly increased from those in the control group. AS-1 significantly reduced the phosphorylation of p38 MAPK induced by IL-1β. IL-1β increased the phosphorylation of IRAK-1 significantly, which was prevented by AS-1. Conclusion:AS-1 is a competitive mimic between IL-1R I-TIR and MyD88-TIR domain, which most likely interferes with MyD88-dependent signaling pathway.
基金Nanchong city school cooperative research project in 2018(No.18SXHZ0445).
文摘Objective:To investigate the clinical efficacy of dexmedetomidine in the regulation of TLR4/My D88/NF-κB in the prevention of paroxysmal sympathetic over-excitation (PSH) in patients with severe head injury. Methods:One hundred patients with severe head injury who were admitted to our hospital from September 2016 to May 2019 were enrolled. The randomized digital table method was divided into 50 cases in the study group and the control group. Patients in the study group were given dexmedetomidine at a dose of 1.0 μg/kg before anesthesia induction, followed by infusion at 0.4 μg / (kg·h), and the control group was injected with the same amount of normal saline. The incidence of PSH, clinical symptoms, imaging findings, mechanical ventilation time, tracheal intubation/incision duration, ICU hospitalization time, total length of hospital stay, and GCS scores three months after discharge were compared between the two groups. At the same time, the fluorescence intensity, TLR4, NF-κB expression level and tumor necrosis factor-α (TNF-α) expression levels in peripheral blood CD14+ monocytes of the two groups were detected. Results:The incidence of PSH was significantly lower in the study group than in the control group at 7 and 3 months (P<0.05). The total length of hospital stay, duration of ICU hospitalization, intraoperative tracheotomy, and mechanical ventilation time were significantly lower in the study group than in the control group. And the GCS score was higher than the control group, and the difference was statistically significant (P<0.05). In addition, the imaging results showed that there were some differences in the location of imaging lesions between the two groups. The proportion of lesions in the ventricular system and surrounding areas was higher in the control group than in the study group (P<0.05). And the T14-T3 CD14+ PBMC MyD88 fluorescence intensity, TLR4 and NK-κB positive expression rate were significantly higher than those of T0 (P<0.05), but the MyD88 fluorescence intensity, TLR4 and NK-κB positive expression rate in the study group were significantly lower than those in the control group at T1~T3 (P<0.05). The levels of serum TNF-α in T1~T3 groups were significantly higher than those in T0 (P<0.05), but the levels of serum TNF-α in T1~T3 in the study group were significantly lower than those in the control group (P< 0.05). Conclusions:Dexmedetomidine can reduce the oxidative stress response in patients with severe head injury by inhibiting TLR4/My D88/NF-κB signaling pathway, thus effectively reducing the risk of PSH and improving the prognosis of patients.
基金The project supported by National Natural Science Foundation of China(NSFC 21476054)the Natural Science Foundation of Heilongjiang Province(B201407)
文摘OBJECTIVE The greatest challenge in chemotherapy of ischemic stroke is the construction a suitable delivery system to overcome the poor physicochemical properties of drug and its low permeability across the blood brain barrier(BBB).METHODS In the present study,dendrimer,polyamidoamine(PAMAM),was synthesized as the nano-drug carriers.Angiopep-2,which has been proved excellent ability to cross the BBB,was exploited as the targeting ligand to conjugate PAMAM via bifunctional polyethylene glycol(PEG).Then scutellarin(STA)was encapsulated into the functionalized nanoparticles(NPs)to formulate Angiopep-2 modified STA-loaded PEG-PAMAM NPs.Ischemic stroke model was established to evaluate the treatment efficacy and protective mechanism of Angiopep-2-STA-PEG-PAMAM NPs.RESULTS The pharmacokinetics and biodistribu-tion demonstrated that Angiopep-2-STA-PEG-PAMAM NPs exhibited significantly higher plasma concentration from 1 h to 10 h after intravenous administration and improve accumulation in brain(4.7-fold)compared with STA solution.Moreover,prolonged elimination half-life(4.8-fold)and lower clearance(3.4-fold)were observed.The brain uptake study of 6-coumarin confirmed that Angiopep-2-PEG-PAMAM NPs possessed better brain targeting efficacy(3.2-fold)than PEG-PAMAM NPs.Angiopep-2-STA-PEG-PAMAM NPs obviously ameliorated infarct volume,neurological deficit,histopathological severity and neuronal apoptosis.In addition,Angiopep-2-STA-PEG-PAMAM NPs markedly inhibited the calcium content and the levels of IL-12p40,IL-13,IL-17 and IL-23.Furthermore,Angiopep-2-STA-PEG-PAMAM NPs significantly decreased the m RNA and protein expressions of HMGB1,TLR2,TLR4,TLR5,My D88,TRIF,TRAM,IRAK-4,TRAF6,IкBα,IKKβand NF-кBp65.CONCLUSION The results suggested that Angiopep-2modified scutellarin-loaded PEG-PAMAM nanocarriers possessed remarkable neuroprotective effects on ischemic stroke through modulation of inflammatory cascades and HMGB1/TLRs/MyD 88-induced NF-κB activation pathways.
基金Supported by Project of National Natural Science Foundation of China(8216150526)Natural Scienceof Guangxi(2020GXNSFAA297062)+1 种基金SAP Early TCM and Western Medicine Treatment Program of Guangxi Zhuang Autonomous Region Promotion and Application Project(S2019021)Project of Guangxi Graduate Education Innovation(YCBXJ2021010&YCBXJ2021009)。
文摘[Objectives]To conduct bioinformatic analysis and experimental verification of Qingjie Huagong Decoction(QJHGD)on caerulein-induced inflammatory response in severe acute pancreatitis(SAP)model rats based on TLR4/NF-κB/MyD88 pathway.[Methods]The effective component groups and potential targets of QJHGD were collected by the network pharmacology method.A drug-component-target network was constructed.The GO and KEGG of targets were enriched and analyzed with the aid of Metascape database,and the target pathway related to SAP inflammation was screened.The SAP rat model was established by caerulein combined with lipopolysaccharide,and QJHGD was intragastrically administered.Pancreatic tissue was observed by HE staining.In addition,enzyme-linked immunosorbent assay and immunohistochemistry were used to verify the anti-inflammatory effect of QJHGD on SAP rats and its regulatory effect on TLR4/NF-κB/MyD88 target pathway.[Results]A total of 105 active components of QJHGD and 148 key targets of SAP were predicted and screened;KEGG was enriched in 320 different pathways including toll-like receptor and NF-κB classical pathways.Animal experiment verified that QJHGD reduced serum amylase,serum lipase activity,IL-6,TNF-αlevels in SAP rats;HE staining showed the effect of QJHGD on the pathological changes of pancreas,and QJHGD inhibited the positive expression of key proteins of TLR4,NF-κB and MyD88 in the inflammatory transduction pathway.[Conclusions]The mechanism of QJHGD improving pancreatic injury in SAP rats may be related to down-regulating the expression of key proteins in the TLR4/NF-κB/MyD88 pathway.
文摘Objective: To study the correlation of MyD88 expression in peripheral blood and placenta with the inflammatory response and insulin signal transduction in the placenta of patients with gestational diabetes mellitus (GDM). Methods: The patients with GDM and healthy pregnant women who accepted antenatal care and gave birth in Guangyuan First People's Hospital between March 2015 and June 2017 were selected as the research subjects and enrolled in the GDM group and control group for the study respectively;the peripheral blood was collected before delivery to determine the MyD88 mRNA expression, and the placental tissue was collected after delivery to determine the mRNA expression of MyD88, inflammatory response molecules and insulin signal transduction molecules. Results: MyD88 mRNA expression levels in the peripheral blood and placenta of GDM group were significantly higher than those of control group, and the MyD88 mRNA expression in the peripheral blood was positively correlated with the MyD88 mRNA expression in the placenta;IL-1β, IL-6, RBP4, Chemerin, Resistin and PTP1B mRNA expression levels in the placenta of GDM group were significantly higher than those of control group whereas IRS1, ISR2, p-PI3K and GLUT4 protein expression levels were significantly lower than those of control group;IL-1β, IL-6, RBP4, Chemerin, Resistin and PTP1B mRNA expression levels in the placenta of GDM group of patients with high MyD88 expression were significantly higher than those of patients with low MyD88 expression whereas IRS1, ISR2, p-PI3K and GLUT4 protein expression levels were significantly lower than those of patients with low MyD88 expression. Conclusion:The expression of MyD88 in peripheral blood and placenta increase in patients with GDM and the change of MyD88 expression in peripheral blood could reflect the abnormality of inflammatory response and insulin signal transduction in the placenta.