期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Exploration of Earth-Abundant Transition Metals(Fe,Co,Ni)Doped on W_(18)O_(49)System as Electrocatalysts for Urea Productiont
1
作者 Kaile Li Changyan Zhu +6 位作者 Xiaohui Yao Ao Yang Yunjie Chu Mengxue Wang Yun Geng Zhongmin Su Min Zhang 《Chinese Journal of Chemical Physics》 SCIE EI CAS 2024年第5期605-613,I0041-I0050,I0099,共20页
The conversion of inert N_(2)and CO_(2)into urea by electrocatalytic technology not only reduces the cost of urea synthesis in future,but also alleviatesthe environmental pollution problem caused by carbon emission in... The conversion of inert N_(2)and CO_(2)into urea by electrocatalytic technology not only reduces the cost of urea synthesis in future,but also alleviatesthe environmental pollution problem caused by carbon emission in traditional industrial production.However,facing downside factors such as strong competitive reactions and unclear reaction mechanism,the design of high-performance urea catalysts is imminent.This study demonstrates that W_(18)O_(49)system doped heteronuclear metals(TM=Fe,Co,Ni)can effectively solve the problem of competitive adsorption between N_(2)and CO_(2)and realize the co-adsorption of N_(2)and CO_(2)at diverse sites.Their theoretical limiting voltages for urea production on TM-W_(18)O_(49)(TM=Fe,Co,Ni)systems are-0.46 V,-0.42 V and-0.52 V,respectively.The results are all lower than that of the contrastive voltage in pristine W_(18)O_(49)system(-0.91 V),further indicating the rationality and necessity of single-atom doped strategy for the co-reduction of two molecules.Specially,Co-W_(18)O_(49)can theoretically inhibit the side reactions of NRR,CO_(2)RR,and HER,which deserve future experimental exploration in future.The study suggests that doping heteronuclear metal into transition metal oxides is a feasible scheme to solve competitive adsorption and improve catalytic performance. 展开更多
关键词 Urea production Competitive adsorption Doping heteronuclear metals tm-w_(18)o_(49)catalysts Density functional theory calculation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部