为研究调谐质量阻尼器(tuned mass damper,简称TMD)在控制轨道箱梁结构振动中的应用,以高速动车组和CRTS-Ⅱ型板式无砟轨道-箱梁结构为原型,设计制作了几何相似比为10∶1的车-轨-桥耦合振动缩尺模型系统,分析了TMD在不同质量比、不同位...为研究调谐质量阻尼器(tuned mass damper,简称TMD)在控制轨道箱梁结构振动中的应用,以高速动车组和CRTS-Ⅱ型板式无砟轨道-箱梁结构为原型,设计制作了几何相似比为10∶1的车-轨-桥耦合振动缩尺模型系统,分析了TMD在不同质量比、不同位置以及不同安装数量等工况下对箱梁顶板和翼板的减振效果。结果表明:TMD质量比为0.02时减振效果优于质量比为0.01时的减振效果,在考虑结构安全及经济性的条件下,可优先选择质量比更大的TMD;不同TMD安装位置对箱梁各部件的减振效果不同,安装TMD的板件处振动响应得到了明显抑制;安装2个TMD对箱梁结构的减振效果优于安装1个TMD,其减振范围也有所提升。研究结论可为高架轨道箱梁结构的减振设计提供参考。展开更多
为了解决传统式调谐质量阻尼器(tuned mass damper, TMD)在控制低频桥梁结构中弹簧静伸长过长的问题,介绍了滑轮式TMD及其用于结构振动控制时的特点,指出滑轮式TMD可以有效减小弹簧静伸长量。以一座人行景观桥为例,研究了采用气动措施...为了解决传统式调谐质量阻尼器(tuned mass damper, TMD)在控制低频桥梁结构中弹簧静伸长过长的问题,介绍了滑轮式TMD及其用于结构振动控制时的特点,指出滑轮式TMD可以有效减小弹簧静伸长量。以一座人行景观桥为例,研究了采用气动措施和滑轮式TMD对该桥的涡振控制效果。风洞试验结果显示,在最优气动措施下,主梁的涡振振幅减少了一半以上,但仍未达到行人舒适性要求。基于Scanlan线性涡激力模型进行滑轮式TMD的优化设计,在气动措施的基础上进一步辅以滑轮式TMD进行涡振控制。分析结果表明,气动措施结合滑轮式TMD进行涡振控制能够满足行人舒适性要求,并确保滑轮式TMD质量块的工作行程不超过限值。通过同时采用气动措施和滑轮式TMD,可以满足主梁涡振限值、TMD弹簧静伸长量和工作行程等多重要求,从而有效控制主梁的涡振现象。本文提出的混合控制方案为类似工程中的涡振控制提供了有益参考,可为工程实践提供指导。展开更多
为研究桥梁抗风型调谐质量阻尼器(tuned mass damper, TMD)对车辆荷载引起结构振动的减振效果,并揭示车载作用下的TMD激振机理,提出了基于模态动能演化的多自由度结构TMD控制方法,确定了安装TMD的最优设计参数和布设位置;考虑桥梁有限...为研究桥梁抗风型调谐质量阻尼器(tuned mass damper, TMD)对车辆荷载引起结构振动的减振效果,并揭示车载作用下的TMD激振机理,提出了基于模态动能演化的多自由度结构TMD控制方法,确定了安装TMD的最优设计参数和布设位置;考虑桥梁有限元模型动力求解的通用性,基于桥梁三维动力分析系统BDANS软件建立了车-桥-TMD动力耦合分析系统;以经典单自由度移动弹簧质量过简支梁模型为研究对象,分析了车-桥-TMD系统振动特性,结合某深水区非通航桥梁抗风型TMD工程实例分析了TMD对车致振动的减振效果和机理。研究结果表明:TMD行程幅值与减振效果呈现正相关特点,即行程幅值越大对车-桥动力效应引起的振动减振效果越好;安装TMD可以显著提高结构的等效阻尼比,满足等效阻尼比>1%的工程需求,提高桥梁结构振动的稳定性;TMD在一定条件下可以减小车辆通过时引发桥梁竖向位移冲击效应,最大可减少3%左右;TMD对车-桥2个子系统的加速度瞬态峰值均起到了一定的抑制效果,尤其对桥梁结构竖向振动加速度作用效果明显,安装TMD后的桥梁跨中竖向振动加速度RMS值减少约20%;对大跨钢箱桥梁而言,相比较小的车辆荷载冲击效应,一阶竖弯呈邻跨反对称特性的桥梁结构在车辆通行过程中更容易激起TMD,使桥梁结构获得更佳的减振效果。展开更多
针对调谐质量阻尼器(Tuned Mass Damper,TMD)通常需要较大的附加质量,安装空间受限以及质量块运动时需要较大的行程等问题,基于平动‐转动运动形式相互转化和能量守恒原理,本文提出了利用转动惯量虚拟平动惯性质量的TMD控制系统(Rotary ...针对调谐质量阻尼器(Tuned Mass Damper,TMD)通常需要较大的附加质量,安装空间受限以及质量块运动时需要较大的行程等问题,基于平动‐转动运动形式相互转化和能量守恒原理,本文提出了利用转动惯量虚拟平动惯性质量的TMD控制系统(Rotary inertia virtualizing translational mass based Tuned Mass Damper,简称RTMD),进行RTMD控制系统的设计概念,以单自由度结构对象为例建立了附加RTMD控制系统的运动方程,分析了RTMD控制系统参数对结构振动控制效果的影响规律。结果表明控制效果与系统的质量比、惯质比、阻尼比等参数密切相关,相关规律也可以推广到一般多自由度结构体系一阶振动的调谐吸振减振控制。进行了模型振动台试验研究,时域分析和频域分析结果均表明,试验结果与基于理论模型的数值分析结果一致性良好,验证了RTMD控制系统理论模型的正确性、设计参数的合理性以及控制系统应用于实际问题的可行性。展开更多
The thermoelectric energy conversion technique by employing the Disk-Magnet Electromagnetic Induction (DM-EMI) is examined in detail, and possible applications to heat engines as one of the energy-harvesting technolog...The thermoelectric energy conversion technique by employing the Disk-Magnet Electromagnetic Induction (DM-EMI) is examined in detail, and possible applications to heat engines as one of the energy-harvesting technologies are discussed. The idea is induced by the analysis of thermomechanical dynamics (TMD) for a nonequilibrium irreversible thermodynamic system of heat engines, such as a drinking bird and a low temperature Stirling engine, resulting in thermoelectric energy generation different from conventional heat engines. The current thermoelectric energy conversion with DM-EMI can be applied to wide ranges of machines and temperature differences. The mechanism of DM-EMI energy converter is categorized as the axial flux generator (AFG), which is the reason why the technology is applicable to sensitive thermoelectric conversions. On the other hand, almost all the conventional turbines use the radius flux generator to extract huge electric power, which uses the radial flux generator (RFG). The axial flux generator is helpful for a low mechanoelectric energy conversion and activations of waste heat from macroscopic energy generators such as wind, geothermal, thermal, nuclear power plants and heat-dissipation lines. The technique of DM-EMI will contribute to solving environmental problems to maintain clean and sustainable energy as one of the energy harvesting technologies.展开更多
The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple ba...The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general.展开更多
A thermoelectric generation Stirling engine (TEG-Stirling engine) is discussed by employing a low temperature Stirling engine and the dissipative equation of motion derived from the method of thermomechanical dynamics...A thermoelectric generation Stirling engine (TEG-Stirling engine) is discussed by employing a low temperature Stirling engine and the dissipative equation of motion derived from the method of thermomechanical dynamics (TMD). The results and mechanism of axial flux electromagnetic induction (AF-EMI) are applied to a low temperature Stirling engine, resulting in a TEG-Stirling engine. The method of TMD produced thermodynamically consistent and time-dependent physical quantities for the first time, such as internal energy ℰ(t), thermodynamic work Wth(t), the total entropy (heat dissipation) Qd(t)and measure or temperature of a nonequilibrium state T˜(t). The TMD analysis produced a lightweight mechanical system of TEG-Stirling engine which derives electric power from waste heat of temperature (40˚CT100˚C) by a thermoelectric conversion method. An optimal low rotational speed about 30θ′(t)/(2π)60(rpm) is found, applicable to devices for sustainable, clean energy technologies. The stability of a thermal state and angular rotations of TEG-Stirling engine are specifically shown by employing properties of nonequilibrium temperature T˜(t), which is also applied to study optimal fuel-injection and combustion timings of heat engines.展开更多
The success of the tuned mass damper (TMD) in reducing wind-induced structural vibrations has been well established. However, from most of the recent numerical studies, it appears that for a structure situated on very...The success of the tuned mass damper (TMD) in reducing wind-induced structural vibrations has been well established. However, from most of the recent numerical studies, it appears that for a structure situated on very soft soil, soil-structure interaction (SSI) could render a damper on the structure totally ineffective. In order to experimentally verify the SSI effect on the seismic performance of TMD, a series of shaking table model tests have been conducted and the results are presented in this paper. It has been shown that the TMD is not as effective in controlling the seismic responses of structures built on soft soil sites due to the SSI effect. Some test results also show that a TMD device might have a negative impact if the SSI effect is neglected and the structure is built on a soft soil site. For structures constructed on a soil foundation, this research verifies that the SSI effect must be carefully understood before a TMD control system is designed to determine if the control is necessary and if the SSI effect must be considered when choosing the optimal parameters of the TMD device.展开更多
Aims: To evaluate the association between bruxism, headaches, and temporomandibular disorder (TMD). Methods: A keyword search of the clinical notes of patients’ charts in AxiUm<sup>TM</sup> was performed ...Aims: To evaluate the association between bruxism, headaches, and temporomandibular disorder (TMD). Methods: A keyword search of the clinical notes of patients’ charts in AxiUm<sup>TM</sup> was performed using the search terms “TMD”, “headache”, and “sleep bruxism” to identify these patients. The inclusion criteria were patients with partial of full dentition, aged 18 to 65 years old who attended the UNLV School of Dental Medicine clinics between January 2014 and September 2018. Patients with incomplete records and those who were completely edentulous formed the exclusion criteria. Data were analyzed using the Pearson Correlation Coefficient. Results: The final sample was made up of 529 patients. The highest percentage of study subjects were in the age range of 29 - 34 (17.9%), with a statistically significant correlation to pain on opening (P = 0.0403). Females showed a statistically significant correlation to TMJ clicking (P = 0.0033). Caucasians also had a statistically significant correlation to TMJ clicking (P = 0.0001). In addition, a statistically significant correlation between pain on opening or chewing and headaches was also observed (P = 0.0081). Conclusion: Within the limitations of the present study, Caucasians, and females presented with more TMJ clicking than the other study subjects. Young adults, in particular, experienced more pain on opening or chewing.展开更多
文摘为研究调谐质量阻尼器(tuned mass damper,简称TMD)在控制轨道箱梁结构振动中的应用,以高速动车组和CRTS-Ⅱ型板式无砟轨道-箱梁结构为原型,设计制作了几何相似比为10∶1的车-轨-桥耦合振动缩尺模型系统,分析了TMD在不同质量比、不同位置以及不同安装数量等工况下对箱梁顶板和翼板的减振效果。结果表明:TMD质量比为0.02时减振效果优于质量比为0.01时的减振效果,在考虑结构安全及经济性的条件下,可优先选择质量比更大的TMD;不同TMD安装位置对箱梁各部件的减振效果不同,安装TMD的板件处振动响应得到了明显抑制;安装2个TMD对箱梁结构的减振效果优于安装1个TMD,其减振范围也有所提升。研究结论可为高架轨道箱梁结构的减振设计提供参考。
文摘为了解决传统式调谐质量阻尼器(tuned mass damper, TMD)在控制低频桥梁结构中弹簧静伸长过长的问题,介绍了滑轮式TMD及其用于结构振动控制时的特点,指出滑轮式TMD可以有效减小弹簧静伸长量。以一座人行景观桥为例,研究了采用气动措施和滑轮式TMD对该桥的涡振控制效果。风洞试验结果显示,在最优气动措施下,主梁的涡振振幅减少了一半以上,但仍未达到行人舒适性要求。基于Scanlan线性涡激力模型进行滑轮式TMD的优化设计,在气动措施的基础上进一步辅以滑轮式TMD进行涡振控制。分析结果表明,气动措施结合滑轮式TMD进行涡振控制能够满足行人舒适性要求,并确保滑轮式TMD质量块的工作行程不超过限值。通过同时采用气动措施和滑轮式TMD,可以满足主梁涡振限值、TMD弹簧静伸长量和工作行程等多重要求,从而有效控制主梁的涡振现象。本文提出的混合控制方案为类似工程中的涡振控制提供了有益参考,可为工程实践提供指导。
文摘为研究桥梁抗风型调谐质量阻尼器(tuned mass damper, TMD)对车辆荷载引起结构振动的减振效果,并揭示车载作用下的TMD激振机理,提出了基于模态动能演化的多自由度结构TMD控制方法,确定了安装TMD的最优设计参数和布设位置;考虑桥梁有限元模型动力求解的通用性,基于桥梁三维动力分析系统BDANS软件建立了车-桥-TMD动力耦合分析系统;以经典单自由度移动弹簧质量过简支梁模型为研究对象,分析了车-桥-TMD系统振动特性,结合某深水区非通航桥梁抗风型TMD工程实例分析了TMD对车致振动的减振效果和机理。研究结果表明:TMD行程幅值与减振效果呈现正相关特点,即行程幅值越大对车-桥动力效应引起的振动减振效果越好;安装TMD可以显著提高结构的等效阻尼比,满足等效阻尼比>1%的工程需求,提高桥梁结构振动的稳定性;TMD在一定条件下可以减小车辆通过时引发桥梁竖向位移冲击效应,最大可减少3%左右;TMD对车-桥2个子系统的加速度瞬态峰值均起到了一定的抑制效果,尤其对桥梁结构竖向振动加速度作用效果明显,安装TMD后的桥梁跨中竖向振动加速度RMS值减少约20%;对大跨钢箱桥梁而言,相比较小的车辆荷载冲击效应,一阶竖弯呈邻跨反对称特性的桥梁结构在车辆通行过程中更容易激起TMD,使桥梁结构获得更佳的减振效果。
文摘针对调谐质量阻尼器(Tuned Mass Damper,TMD)通常需要较大的附加质量,安装空间受限以及质量块运动时需要较大的行程等问题,基于平动‐转动运动形式相互转化和能量守恒原理,本文提出了利用转动惯量虚拟平动惯性质量的TMD控制系统(Rotary inertia virtualizing translational mass based Tuned Mass Damper,简称RTMD),进行RTMD控制系统的设计概念,以单自由度结构对象为例建立了附加RTMD控制系统的运动方程,分析了RTMD控制系统参数对结构振动控制效果的影响规律。结果表明控制效果与系统的质量比、惯质比、阻尼比等参数密切相关,相关规律也可以推广到一般多自由度结构体系一阶振动的调谐吸振减振控制。进行了模型振动台试验研究,时域分析和频域分析结果均表明,试验结果与基于理论模型的数值分析结果一致性良好,验证了RTMD控制系统理论模型的正确性、设计参数的合理性以及控制系统应用于实际问题的可行性。
文摘The thermoelectric energy conversion technique by employing the Disk-Magnet Electromagnetic Induction (DM-EMI) is examined in detail, and possible applications to heat engines as one of the energy-harvesting technologies are discussed. The idea is induced by the analysis of thermomechanical dynamics (TMD) for a nonequilibrium irreversible thermodynamic system of heat engines, such as a drinking bird and a low temperature Stirling engine, resulting in thermoelectric energy generation different from conventional heat engines. The current thermoelectric energy conversion with DM-EMI can be applied to wide ranges of machines and temperature differences. The mechanism of DM-EMI energy converter is categorized as the axial flux generator (AFG), which is the reason why the technology is applicable to sensitive thermoelectric conversions. On the other hand, almost all the conventional turbines use the radius flux generator to extract huge electric power, which uses the radial flux generator (RFG). The axial flux generator is helpful for a low mechanoelectric energy conversion and activations of waste heat from macroscopic energy generators such as wind, geothermal, thermal, nuclear power plants and heat-dissipation lines. The technique of DM-EMI will contribute to solving environmental problems to maintain clean and sustainable energy as one of the energy harvesting technologies.
文摘The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general.
文摘A thermoelectric generation Stirling engine (TEG-Stirling engine) is discussed by employing a low temperature Stirling engine and the dissipative equation of motion derived from the method of thermomechanical dynamics (TMD). The results and mechanism of axial flux electromagnetic induction (AF-EMI) are applied to a low temperature Stirling engine, resulting in a TEG-Stirling engine. The method of TMD produced thermodynamically consistent and time-dependent physical quantities for the first time, such as internal energy ℰ(t), thermodynamic work Wth(t), the total entropy (heat dissipation) Qd(t)and measure or temperature of a nonequilibrium state T˜(t). The TMD analysis produced a lightweight mechanical system of TEG-Stirling engine which derives electric power from waste heat of temperature (40˚CT100˚C) by a thermoelectric conversion method. An optimal low rotational speed about 30θ′(t)/(2π)60(rpm) is found, applicable to devices for sustainable, clean energy technologies. The stability of a thermal state and angular rotations of TEG-Stirling engine are specifically shown by employing properties of nonequilibrium temperature T˜(t), which is also applied to study optimal fuel-injection and combustion timings of heat engines.
基金National Natural Science Foundation of China Under Grant No.59778027State Key Laboratory of Coastal Offshore EngineeringDalian University of Technology Under Grant No.9702
文摘The success of the tuned mass damper (TMD) in reducing wind-induced structural vibrations has been well established. However, from most of the recent numerical studies, it appears that for a structure situated on very soft soil, soil-structure interaction (SSI) could render a damper on the structure totally ineffective. In order to experimentally verify the SSI effect on the seismic performance of TMD, a series of shaking table model tests have been conducted and the results are presented in this paper. It has been shown that the TMD is not as effective in controlling the seismic responses of structures built on soft soil sites due to the SSI effect. Some test results also show that a TMD device might have a negative impact if the SSI effect is neglected and the structure is built on a soft soil site. For structures constructed on a soil foundation, this research verifies that the SSI effect must be carefully understood before a TMD control system is designed to determine if the control is necessary and if the SSI effect must be considered when choosing the optimal parameters of the TMD device.
文摘Aims: To evaluate the association between bruxism, headaches, and temporomandibular disorder (TMD). Methods: A keyword search of the clinical notes of patients’ charts in AxiUm<sup>TM</sup> was performed using the search terms “TMD”, “headache”, and “sleep bruxism” to identify these patients. The inclusion criteria were patients with partial of full dentition, aged 18 to 65 years old who attended the UNLV School of Dental Medicine clinics between January 2014 and September 2018. Patients with incomplete records and those who were completely edentulous formed the exclusion criteria. Data were analyzed using the Pearson Correlation Coefficient. Results: The final sample was made up of 529 patients. The highest percentage of study subjects were in the age range of 29 - 34 (17.9%), with a statistically significant correlation to pain on opening (P = 0.0403). Females showed a statistically significant correlation to TMJ clicking (P = 0.0033). Caucasians also had a statistically significant correlation to TMJ clicking (P = 0.0001). In addition, a statistically significant correlation between pain on opening or chewing and headaches was also observed (P = 0.0081). Conclusion: Within the limitations of the present study, Caucasians, and females presented with more TMJ clicking than the other study subjects. Young adults, in particular, experienced more pain on opening or chewing.