Optimal design theory for linear tuned mass dampers (TMD) has been thoroughly investigated, but is still under development for nonlinear TMDs. In this paper, optimization procedures in the time domain are proposed f...Optimal design theory for linear tuned mass dampers (TMD) has been thoroughly investigated, but is still under development for nonlinear TMDs. In this paper, optimization procedures in the time domain are proposed for design of a TMD with nonlinear viscous damping. A dynamic analysis of a structure implemented with a nonlinear TMD is conducted first. Optimum design parameters for the nonlinear TMD are searched using an optimization method to minimize the performance index. The feasibility of the proposed optimization method is illustrated numerically by using the Taipei 101 structure implemented with TMD. The sensitivity analysis shows that the performance index is less sensitive to the damping coefficient than to the frequency ratio. Time history analysis is conducted using the Taipei 101 structure implemented with different TMDs under wind excitation. For both linear and nonlinear TMDs, the comfort requirements for building occupants are satisfied as long as the TMD is properly designed. It was found that as the damping exponent increases, the relative displacement of the TMD decreases but the damping force increases.展开更多
The problems of ice-induced vibration have been noticed and concerned since the 1960s, but it has not been well resolved. One reason is that the dynamic interaction between ice and structure is so complicated that pra...The problems of ice-induced vibration have been noticed and concerned since the 1960s, but it has not been well resolved. One reason is that the dynamic interaction between ice and structure is so complicated that practical ice force model has not been developed. The recent full-scale tests conducted on jacket platforms in the Bohai Sea presented that ice could cause intense vibrations which endanger the facilities on the deck and make discomfort for the crew. In this paper, the strategy of mitigation of ice-induced offshore structure vibration is discussed. Based on field observations and understanding of the interaction between ice and structure, the absorption mitigation method to suppress ice-induced vibration is presented. The numerical simulations were conducted for a simplified model of platform attached with a Tuned Mass Danlper (TMD) under ice force function and ice force time history. The simulation results show that TMD can fa- vorably reduce ice-induced vibrations, therefore, it can be considered to be an alternative approach to utilize. Finally, the application possibilities of utilizing TMDs on other miniature offshore structures in ice-covered areas of marginal oil fields are discussed.展开更多
Most of modern tall buildings using lighter construction materials with high strength and less stiffness are more flexible, which occurs excessive wind-induced vibration, resulting in occupant discomfort and structura...Most of modern tall buildings using lighter construction materials with high strength and less stiffness are more flexible, which occurs excessive wind-induced vibration, resulting in occupant discomfort and structural unsafety. It is necessary to predict wind-induced vibration response and find out a method to mitigate such an excessive wind-induced vibration at the preliminary design stage. Recently, many studies have been conducted in using actuator control force based on the linear quadratic optimum control algorithm. It was accepted as a common knowledge that the performance of passive tuned mass damper(TMD) could increase by incorporating a feedback active control force in the design of TMD, which is called active tuned mass damper(ATMD). However, the fact that ATMD is superior to TMD to reduce wind-induced vibration of a tall building is still a question. The effectiveness of TMD for mitigating the along-wind vibration of a tall building was investigated. Optimum parameters of tuning frequency and damping ratio for TMD under a random load which has a white noise spectra were used. Fluctuating along-wind load acting on a tall building treated as a stationary Gaussian random process was simulated numerically using the along-wind load spectra. And using this simulated along-wind load, along-wind responses of a tall building with and without TMD were calculated and the effectiveness of TMD in mitigating the along-wind response of a tall building was found out.展开更多
Based on a multiobjective approach whose objective function (OF) vector collects stochastic reliability performance and structural cost indices, a structural optimization criterion for mechanical systems subject to ra...Based on a multiobjective approach whose objective function (OF) vector collects stochastic reliability performance and structural cost indices, a structural optimization criterion for mechanical systems subject to random vibrations is presented for supporting engineer’s design. This criterion differs from the most commonly used conventional optimum design criterion for random vibrating structure, which is based on minimizing displacement or acceleration variance of main structure responses, without considering explicitly required performances against failure. The proposed criterion can properly take into account the design-reliability required performances, and it becomes a more efficient support for structural engineering decision making. The multiobjective optimum (MOO) design of a tuned mass damper (TMD) has been developed in a typical seismic design problem, to control structural vibration induced on a multi-storey building structure excited by nonstationary base acceleration random process. A numerical example for a three-storey building is developed and a sensitivity analysis is carried out. The results are shown in a useful manner for TMD design decision support.展开更多
There is a global trend for seismic response improvement of new buildings to reduce cost and future damage. It is also important to improve existing structures that are designed without consideration of seismic load o...There is a global trend for seismic response improvement of new buildings to reduce cost and future damage. It is also important to improve existing structures that are designed without consideration of seismic load or using old provisions that cannot meet the new one. The objective of this paper is to draw attention to evaluate existing reinforced concrete school buildings, then to present a proposed methodology to improve the behaviour of such schools with low cost especially in a developing country. The proposed method uses overhead water tanks as a tuned mass damper. A pushover analysis has been performed to evaluate the existing schools and perform a feasibility study to select the best solution to achieve seismic response improvement of the existing structure. Of course, the proposed methodology can be applied easily to other existing structures.展开更多
文摘Optimal design theory for linear tuned mass dampers (TMD) has been thoroughly investigated, but is still under development for nonlinear TMDs. In this paper, optimization procedures in the time domain are proposed for design of a TMD with nonlinear viscous damping. A dynamic analysis of a structure implemented with a nonlinear TMD is conducted first. Optimum design parameters for the nonlinear TMD are searched using an optimization method to minimize the performance index. The feasibility of the proposed optimization method is illustrated numerically by using the Taipei 101 structure implemented with TMD. The sensitivity analysis shows that the performance index is less sensitive to the damping coefficient than to the frequency ratio. Time history analysis is conducted using the Taipei 101 structure implemented with different TMDs under wind excitation. For both linear and nonlinear TMDs, the comfort requirements for building occupants are satisfied as long as the TMD is properly designed. It was found that as the damping exponent increases, the relative displacement of the TMD decreases but the damping force increases.
基金the National High Technology Research and Development Program of China(863 Program,Grant No. 2001AA602015)the National Natural Science Foundation of China (Grant No.10672029)
文摘The problems of ice-induced vibration have been noticed and concerned since the 1960s, but it has not been well resolved. One reason is that the dynamic interaction between ice and structure is so complicated that practical ice force model has not been developed. The recent full-scale tests conducted on jacket platforms in the Bohai Sea presented that ice could cause intense vibrations which endanger the facilities on the deck and make discomfort for the crew. In this paper, the strategy of mitigation of ice-induced offshore structure vibration is discussed. Based on field observations and understanding of the interaction between ice and structure, the absorption mitigation method to suppress ice-induced vibration is presented. The numerical simulations were conducted for a simplified model of platform attached with a Tuned Mass Danlper (TMD) under ice force function and ice force time history. The simulation results show that TMD can fa- vorably reduce ice-induced vibrations, therefore, it can be considered to be an alternative approach to utilize. Finally, the application possibilities of utilizing TMDs on other miniature offshore structures in ice-covered areas of marginal oil fields are discussed.
基金Project(2011-0028567)supported by the National Research Foundation of Korea
文摘Most of modern tall buildings using lighter construction materials with high strength and less stiffness are more flexible, which occurs excessive wind-induced vibration, resulting in occupant discomfort and structural unsafety. It is necessary to predict wind-induced vibration response and find out a method to mitigate such an excessive wind-induced vibration at the preliminary design stage. Recently, many studies have been conducted in using actuator control force based on the linear quadratic optimum control algorithm. It was accepted as a common knowledge that the performance of passive tuned mass damper(TMD) could increase by incorporating a feedback active control force in the design of TMD, which is called active tuned mass damper(ATMD). However, the fact that ATMD is superior to TMD to reduce wind-induced vibration of a tall building is still a question. The effectiveness of TMD for mitigating the along-wind vibration of a tall building was investigated. Optimum parameters of tuning frequency and damping ratio for TMD under a random load which has a white noise spectra were used. Fluctuating along-wind load acting on a tall building treated as a stationary Gaussian random process was simulated numerically using the along-wind load spectra. And using this simulated along-wind load, along-wind responses of a tall building with and without TMD were calculated and the effectiveness of TMD in mitigating the along-wind response of a tall building was found out.
文摘Based on a multiobjective approach whose objective function (OF) vector collects stochastic reliability performance and structural cost indices, a structural optimization criterion for mechanical systems subject to random vibrations is presented for supporting engineer’s design. This criterion differs from the most commonly used conventional optimum design criterion for random vibrating structure, which is based on minimizing displacement or acceleration variance of main structure responses, without considering explicitly required performances against failure. The proposed criterion can properly take into account the design-reliability required performances, and it becomes a more efficient support for structural engineering decision making. The multiobjective optimum (MOO) design of a tuned mass damper (TMD) has been developed in a typical seismic design problem, to control structural vibration induced on a multi-storey building structure excited by nonstationary base acceleration random process. A numerical example for a three-storey building is developed and a sensitivity analysis is carried out. The results are shown in a useful manner for TMD design decision support.
文摘There is a global trend for seismic response improvement of new buildings to reduce cost and future damage. It is also important to improve existing structures that are designed without consideration of seismic load or using old provisions that cannot meet the new one. The objective of this paper is to draw attention to evaluate existing reinforced concrete school buildings, then to present a proposed methodology to improve the behaviour of such schools with low cost especially in a developing country. The proposed method uses overhead water tanks as a tuned mass damper. A pushover analysis has been performed to evaluate the existing schools and perform a feasibility study to select the best solution to achieve seismic response improvement of the existing structure. Of course, the proposed methodology can be applied easily to other existing structures.