期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于GraphSAGE网络的藏文短文本分类研究
1
作者 敬容 杨逸民 +3 位作者 万福成 国旗 于洪志 马宁 《中文信息学报》 CSCD 北大核心 2024年第9期58-65,共8页
文本分类是自然语言处理领域的重要研究方向,由于藏文数据的稀缺性、语言学特征抽取的复杂性、篇章结构的多样性等因素导致藏文文本分类任务进展缓慢。因此,该文以图神经作为基础模型进行改进。首先,在“音节-音节”“音节-文档”建模... 文本分类是自然语言处理领域的重要研究方向,由于藏文数据的稀缺性、语言学特征抽取的复杂性、篇章结构的多样性等因素导致藏文文本分类任务进展缓慢。因此,该文以图神经作为基础模型进行改进。首先,在“音节-音节”“音节-文档”建模的基础上,融合文档特征,采用二元分类模型动态网络构建“文档-文档”边,以充分挖掘短文本的全局特征,增加滑动窗口,减少模型的计算复杂度并寻找最优窗口取值。其次,针对藏文短文本的音节稀疏性,首次引入GraphSAGE作为基础模型,并探究不同聚合方式在藏文短文本分类上的性能差异。最后,为捕获节点间关系的异质性,对邻居节点进行特征加权再平均池化以增强模型的特征提取能力。在TNCC标题文本数据集上,该文模型的分类准确率达到了62.50%,与传统GCN、原始GraphSAGE和预训练语言模型CINO相比,该方法在分类准确率上分别提高了2.56%、1%和2.4%。 展开更多
关键词 图神经网络 藏文文本分类 tncc数据集
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部