The Bozhong Sag is the largest petroliferous sag in the Bohai Bay Basin,and the source rocks of Paleogene Dongying and Shahejie Formations were buried deeply.Most of the drillings were located at the structural high,a...The Bozhong Sag is the largest petroliferous sag in the Bohai Bay Basin,and the source rocks of Paleogene Dongying and Shahejie Formations were buried deeply.Most of the drillings were located at the structural high,and there were few wells that met good quality source rocks,so it is difficult to evaluate the source rocks in the study area precisely by geochemical analysis only.Based on the Rock-Eval pyrolysis,total organic carbon(TOC)testing,the organic matter(OM)abundance of Paleogene source rocks in the southwestern Bozhong Sag were evaluated,including the lower of second member of Dongying Formation(E_(3)d2L),the third member of Dongying Formation(E_(3)d_(3)),the first and second members of Shahejie Formation(E_(2)s_(1+2)),the third member of Shahejie Formation(E_(2)s_(3)).The results indicate that the E_(2)s_(1+2)and E_(2)s_(3)have better hydrocarbon generative potentials with the highest OM abundance,the E_(3)d_(3)are of the second good quality,and the E_(3)d2L have poor to fair hydrocarbon generative potential.Furthermore,the well logs were applied to predict TOC and residual hydrocarbon generation potential(S_(2))based on the sedimentary facies classification,usingΔlogR,generalizedΔlogR,logging multiple linear regression and BP neural network methods.The various methods were compared,and the BP neural network method have relatively better prediction accuracy.Based on the pre-stack simultaneous inversion(P-wave impedance,P-wave velocity and density inversion results)and the post-stack seismic attributes,the three-dimensional(3D)seismic prediction of TOC and S_(2)was carried out.The results show that the seismic near well prediction results of TOC and S_(2)based on seismic multi-attributes analysis correspond well with the results of well logging methods,and the plane prediction results are identical with the sedimentary facies map in the study area.The TOC and S_(2)values of E_(2)s_(1+2)and E_(2)s_(3)are higher than those in E_(3)d_(3)and E_(3)d_(2)L,basically consistent with the geochemical analysis results.This method makes up the deficiency of geochemical methods,establishing the connection between geophysical information and geochemical data,and it is helpful to the 3D quantitative prediction and the evaluation of high-quality source rocks in the areas where the drillings are limited.展开更多
The profound impacts exerted by climate warming on the Tibetan Plateau have been documented extensively, but the biogeochemical responses remain poorly understood. This study was aimed at seasonal variations of total ...The profound impacts exerted by climate warming on the Tibetan Plateau have been documented extensively, but the biogeochemical responses remain poorly understood. This study was aimed at seasonal variations of total organic carbon(TOC) and total organic nitrogen(TON) in stream water at two gauging sections(TTH, ZMD) in the upper basin of Yangtze River(UBYA) and at fourgauging sections(HHY, JM, JG, TNH) in the upper basin of Yellow River(UBYE) in 2013. Results showed that concentrations of TON exhibit higher values in spring and winter and lower values in summer. TOC exhibits higher concentrations in spring or early summer and lower concentrations in autumn or winter. Seasonal variations of TOC and TON fluxes are dominated by water flux. In total, the UBYE and UBYA delivers 55,435 tons C of organic carbon and 9,872 tons N of organic nitrogen to downstream ecosystems in 2013. Although the combined flux ofTOC from UBYA and UBYE is far lower than those from large rivers, their combined yields is higher than, or comparable with, those from some large rivers(e.g. Nile, Orange, Columbia), implying that organic carbon from the Tibetan Plateau may exert a potentially influence on regional and/or global carbon cycles in future warming climate.展开更多
Sillimanite is a brittle mineral as a metamorphic mineral product which is generally derived from clay, along with an increase in pressure and high temperature (600°C - 900°C), and kaliophilite is also a bri...Sillimanite is a brittle mineral as a metamorphic mineral product which is generally derived from clay, along with an increase in pressure and high temperature (600°C - 900°C), and kaliophilite is also a brittle mineral as a potassium bearing in the sand-shale series, which contributes to the clay diagenesis process. In the development of shale hydrocarbon in the Brownshale formation in the Bengkalis Trough, Central Sumatra Basin, using the correlation of the XRD (bulk and clay oriented), TOC, Ro, and MBT analysis results from the drill cuttings of well BS-03, so that the fracable zone interval can be determined. From this correlation, it shows that the presence of sillimanite and kaliophilite minerals as minor minerals greatly affects the changes in shale character and hydrocarbon generation, where at depth intervals of 10,780 ft downward (sand series-shale) there is an interesting phenomenon, <i>i.e. </i> low MBT, low TOC, and high Ro, so it is believed that the depth interval of 10,780 ft downward is a fracable zone interval (brittle shale) which is a good candidate for hydraulic fracking planning, while the upper depth interval is a fracture barrier.展开更多
文摘The Bozhong Sag is the largest petroliferous sag in the Bohai Bay Basin,and the source rocks of Paleogene Dongying and Shahejie Formations were buried deeply.Most of the drillings were located at the structural high,and there were few wells that met good quality source rocks,so it is difficult to evaluate the source rocks in the study area precisely by geochemical analysis only.Based on the Rock-Eval pyrolysis,total organic carbon(TOC)testing,the organic matter(OM)abundance of Paleogene source rocks in the southwestern Bozhong Sag were evaluated,including the lower of second member of Dongying Formation(E_(3)d2L),the third member of Dongying Formation(E_(3)d_(3)),the first and second members of Shahejie Formation(E_(2)s_(1+2)),the third member of Shahejie Formation(E_(2)s_(3)).The results indicate that the E_(2)s_(1+2)and E_(2)s_(3)have better hydrocarbon generative potentials with the highest OM abundance,the E_(3)d_(3)are of the second good quality,and the E_(3)d2L have poor to fair hydrocarbon generative potential.Furthermore,the well logs were applied to predict TOC and residual hydrocarbon generation potential(S_(2))based on the sedimentary facies classification,usingΔlogR,generalizedΔlogR,logging multiple linear regression and BP neural network methods.The various methods were compared,and the BP neural network method have relatively better prediction accuracy.Based on the pre-stack simultaneous inversion(P-wave impedance,P-wave velocity and density inversion results)and the post-stack seismic attributes,the three-dimensional(3D)seismic prediction of TOC and S_(2)was carried out.The results show that the seismic near well prediction results of TOC and S_(2)based on seismic multi-attributes analysis correspond well with the results of well logging methods,and the plane prediction results are identical with the sedimentary facies map in the study area.The TOC and S_(2)values of E_(2)s_(1+2)and E_(2)s_(3)are higher than those in E_(3)d_(3)and E_(3)d_(2)L,basically consistent with the geochemical analysis results.This method makes up the deficiency of geochemical methods,establishing the connection between geophysical information and geochemical data,and it is helpful to the 3D quantitative prediction and the evaluation of high-quality source rocks in the areas where the drillings are limited.
基金funded by the National Natural Science Foundation of China (91647102, 41671053, 41201060, 41271035, 41261017)Open Foundations of State Key Laboratory of Frozen Soil Engineering (SKLFSE201411)+5 种基金Open Foundation of the State Key Laboratory of Cryospheric Sciences (SKLCS-OP-2017-03)Open Foundations of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (2015490111)Fundamental Research Funds for the Central Universities (2014B16914)Special Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (20145027312)Academy of Finland (Decision number 268170), Hundred Talents Program, Chinese Academy of Sciences Key Research Program (KZZD-EW-13)the Fundamental Research Funds for the Central Universities (NO. B14020167)
文摘The profound impacts exerted by climate warming on the Tibetan Plateau have been documented extensively, but the biogeochemical responses remain poorly understood. This study was aimed at seasonal variations of total organic carbon(TOC) and total organic nitrogen(TON) in stream water at two gauging sections(TTH, ZMD) in the upper basin of Yangtze River(UBYA) and at fourgauging sections(HHY, JM, JG, TNH) in the upper basin of Yellow River(UBYE) in 2013. Results showed that concentrations of TON exhibit higher values in spring and winter and lower values in summer. TOC exhibits higher concentrations in spring or early summer and lower concentrations in autumn or winter. Seasonal variations of TOC and TON fluxes are dominated by water flux. In total, the UBYE and UBYA delivers 55,435 tons C of organic carbon and 9,872 tons N of organic nitrogen to downstream ecosystems in 2013. Although the combined flux ofTOC from UBYA and UBYE is far lower than those from large rivers, their combined yields is higher than, or comparable with, those from some large rivers(e.g. Nile, Orange, Columbia), implying that organic carbon from the Tibetan Plateau may exert a potentially influence on regional and/or global carbon cycles in future warming climate.
文摘Sillimanite is a brittle mineral as a metamorphic mineral product which is generally derived from clay, along with an increase in pressure and high temperature (600°C - 900°C), and kaliophilite is also a brittle mineral as a potassium bearing in the sand-shale series, which contributes to the clay diagenesis process. In the development of shale hydrocarbon in the Brownshale formation in the Bengkalis Trough, Central Sumatra Basin, using the correlation of the XRD (bulk and clay oriented), TOC, Ro, and MBT analysis results from the drill cuttings of well BS-03, so that the fracable zone interval can be determined. From this correlation, it shows that the presence of sillimanite and kaliophilite minerals as minor minerals greatly affects the changes in shale character and hydrocarbon generation, where at depth intervals of 10,780 ft downward (sand series-shale) there is an interesting phenomenon, <i>i.e. </i> low MBT, low TOC, and high Ro, so it is believed that the depth interval of 10,780 ft downward is a fracable zone interval (brittle shale) which is a good candidate for hydraulic fracking planning, while the upper depth interval is a fracture barrier.