The effects of circulating fluid bed(CFB) ash on the adsorption performance of polycarboxylate superplasticiser and the mechanism of this influence on the dispersive property of the polycarboxylate superplasticiser we...The effects of circulating fluid bed(CFB) ash on the adsorption performance of polycarboxylate superplasticiser and the mechanism of this influence on the dispersive property of the polycarboxylate superplasticiser were investigated by determing the cement paste fluidity, total organic carbon adsorption, infrared spectroscopic analyses and ζ potential test. The experimental results show that the addition of an inorganic salt into the mixture to change the content of SO42-and Fe2O3can improve the adaptability between the CFB ash and polycarboxylate superplasticiser. Adsorption may occur between the polycarboxylate superplasiciser and Fe2O3, SO42-or other components in CFB ash, leading to a significant reduction in paste fluidity. As the content of Na2SO4in CFB ash reaches 3% or Fe2O3reaches 9%, the paste loses its liquidity. The organic carbon content in the liquor decreases with an increase in Na2SO4or Fe2O3content. Adding some Ba(NO3)2and Na2S to the liquor can recover the organic carbon content to a certain extent, and the absolute value of ζ potential will increase. The addition of Ba(-NO3)2or Na2S reduces the adsorption property of Na2SO4or Fe2O3in CFB ash on the polycarboxylate superplasticiser.展开更多
基金Funded by the National Key Research and Development Program of China(2017YFC0602903)the National Natural Science Foundation of China(51834001)
文摘The effects of circulating fluid bed(CFB) ash on the adsorption performance of polycarboxylate superplasticiser and the mechanism of this influence on the dispersive property of the polycarboxylate superplasticiser were investigated by determing the cement paste fluidity, total organic carbon adsorption, infrared spectroscopic analyses and ζ potential test. The experimental results show that the addition of an inorganic salt into the mixture to change the content of SO42-and Fe2O3can improve the adaptability between the CFB ash and polycarboxylate superplasticiser. Adsorption may occur between the polycarboxylate superplasiciser and Fe2O3, SO42-or other components in CFB ash, leading to a significant reduction in paste fluidity. As the content of Na2SO4in CFB ash reaches 3% or Fe2O3reaches 9%, the paste loses its liquidity. The organic carbon content in the liquor decreases with an increase in Na2SO4or Fe2O3content. Adding some Ba(NO3)2and Na2S to the liquor can recover the organic carbon content to a certain extent, and the absolute value of ζ potential will increase. The addition of Ba(-NO3)2or Na2S reduces the adsorption property of Na2SO4or Fe2O3in CFB ash on the polycarboxylate superplasticiser.