TOPEX/POSEIDON altimeter data from October 1992 to June 2002 are used to calculate the global barotropic M2 tidal currents using long-term tidal harmonic analysis. The tides calculated agree well with ADCP data obtain...TOPEX/POSEIDON altimeter data from October 1992 to June 2002 are used to calculate the global barotropic M2 tidal currents using long-term tidal harmonic analysis. The tides calculated agree well with ADCP data obtained from the South China Sea (SCS). The maximum tide velocities along the semi-major axis and semi-minor axis can be computed from the tidal ellipse. The global distribution of M2 internal tide vertical energy flux from the sea bottom is calculated based on a linear internal wave generation model. The global vertical energy flux of M2 internal tide is 0.96 TW, with 0.36 TW in the Pacific, 0.31 TW in the Atlantic and 0.29 TW in the Indian Ocean, obtained in this study. The total horizontal energy flux of M2 internal tide radiating into the open ocean from the lateral boundaries is 0.13 TW, with 0.06 TW in the Pacific, 0.04TW in the Atlantic, and 0.03 TW in the Indian Ocean. The result shows that the principal lunar semi-diurnal tide Me provides enough energy to maintain the large-scale thermohaline circulation of the ocean.展开更多
Wave fields of the South China Sea (SCS) from 1976 to 2005 were simulated using WAVEWATCH III by inputting high-resolution reanalysis wind field datasets assimilated from several meteorological data sources. Compari...Wave fields of the South China Sea (SCS) from 1976 to 2005 were simulated using WAVEWATCH III by inputting high-resolution reanalysis wind field datasets assimilated from several meteorological data sources. Comparisons of wave heights between WAVEWATCH III and TOPEX/Poseidon altimeter and buoy data show a good agreement. Our results show seasonal variation of wave direction as follows: 1. During the summer monsoon (April-September), waves from south occur from April through September in the southern SCS region, which prevail taking about 40% of the time; 2. During the winter monsoon (December-March), waves from northeast prevail throughout the SCS for 56% of the period; 3. The dominant wave direction in SCS is NE. The seasonal variation of wave height Hs in SCS shows that in spring, Hs〉l m in the central SCS region and is less than 1 m in other areas. In summer, Hs is higher than in spring. During September- November, influenced by tropical cyclones, Hs is mostly higher than 1 m. East of Hainan Island, Hs〉2 m. In winter, Hs reaches its maximum value influenced by the north-east monsoon, and heights over 2 m are found over a large part of SCS. Finally, we calculated the extreme wave parameters in SCS and found that the extreme wind speed and wave height for the 100-year return period for SCS peaked at 45 m/s and 19 m, respectively, SE of Hainan Island and decreased from north to south.展开更多
基金Supported by the National Basic Research Program of China (973 Program, No. 2005CB422303)the International Cooperation Program (No. 2004DFB02700)+1 种基金the National Natural Science Foundation of China (No. 40552002)The TOPEX/POSEIDON data are provided by Physical Oceanography Distributed Active Archive Center (PO DACC)
文摘TOPEX/POSEIDON altimeter data from October 1992 to June 2002 are used to calculate the global barotropic M2 tidal currents using long-term tidal harmonic analysis. The tides calculated agree well with ADCP data obtained from the South China Sea (SCS). The maximum tide velocities along the semi-major axis and semi-minor axis can be computed from the tidal ellipse. The global distribution of M2 internal tide vertical energy flux from the sea bottom is calculated based on a linear internal wave generation model. The global vertical energy flux of M2 internal tide is 0.96 TW, with 0.36 TW in the Pacific, 0.31 TW in the Atlantic and 0.29 TW in the Indian Ocean, obtained in this study. The total horizontal energy flux of M2 internal tide radiating into the open ocean from the lateral boundaries is 0.13 TW, with 0.06 TW in the Pacific, 0.04TW in the Atlantic, and 0.03 TW in the Indian Ocean. The result shows that the principal lunar semi-diurnal tide Me provides enough energy to maintain the large-scale thermohaline circulation of the ocean.
基金Supported by the South China Sea Institute of Oceanology,Chinese Academy of Sciences
文摘Wave fields of the South China Sea (SCS) from 1976 to 2005 were simulated using WAVEWATCH III by inputting high-resolution reanalysis wind field datasets assimilated from several meteorological data sources. Comparisons of wave heights between WAVEWATCH III and TOPEX/Poseidon altimeter and buoy data show a good agreement. Our results show seasonal variation of wave direction as follows: 1. During the summer monsoon (April-September), waves from south occur from April through September in the southern SCS region, which prevail taking about 40% of the time; 2. During the winter monsoon (December-March), waves from northeast prevail throughout the SCS for 56% of the period; 3. The dominant wave direction in SCS is NE. The seasonal variation of wave height Hs in SCS shows that in spring, Hs〉l m in the central SCS region and is less than 1 m in other areas. In summer, Hs is higher than in spring. During September- November, influenced by tropical cyclones, Hs is mostly higher than 1 m. East of Hainan Island, Hs〉2 m. In winter, Hs reaches its maximum value influenced by the north-east monsoon, and heights over 2 m are found over a large part of SCS. Finally, we calculated the extreme wave parameters in SCS and found that the extreme wind speed and wave height for the 100-year return period for SCS peaked at 45 m/s and 19 m, respectively, SE of Hainan Island and decreased from north to south.