A comprehensive and objective risk evaluation model of oil and gas pipelines based on an improved analytic hierarchy process(AHP)and technique for order preference by similarity to an ideal solution(TOPSIS)is establis...A comprehensive and objective risk evaluation model of oil and gas pipelines based on an improved analytic hierarchy process(AHP)and technique for order preference by similarity to an ideal solution(TOPSIS)is established to identify potential hazards in time.First,a barrier model and fault tree analysis are used to establish an index system for oil and gas pipeline risk evaluation on the basis of five important factors:corrosion,external interference,material/construction,natural disasters,and function and operation.Next,the index weight for oil and gas pipeline risk evaluation is computed by applying the improved AHP based on the five-scale method.Then,the TOPSIS of a multi-attribute decision-making theory is studied.The method for determining positive/negative ideal solutions and the normalized equation for benefit/cost indexes is improved to render TOPSIS applicable for the comprehensive risk evaluation of pipelines.The closeness coefficient of oil and gas pipelines is calculated by applying the improved TOPSIS.Finally,the weight and the closeness coefficient are combined to determine the risk level of pipelines.Empirical research using a long-distance pipeline as an example is conducted,and adjustment factors are used to verify the model.Results show that the risk evaluation model of oil and gas pipelines based on the improved AHP–TOPSIS is valuable and feasible.The model comprehensively considers the risk factors of oil and gas pipelines and provides comprehensive,rational,and scientific evaluation results.It represents a new decision-making method for systems engineering in pipeline enterprises and provides a comprehensive understanding of the safety status of oil and gas pipelines.The new system engineering decision-making method is important for preventing oil and gas pipeline accidents.展开更多
基金supported by the National Key Research and Development Program of China(Grant Nos.2017YFC0805804,2017YFC0805801)
文摘A comprehensive and objective risk evaluation model of oil and gas pipelines based on an improved analytic hierarchy process(AHP)and technique for order preference by similarity to an ideal solution(TOPSIS)is established to identify potential hazards in time.First,a barrier model and fault tree analysis are used to establish an index system for oil and gas pipeline risk evaluation on the basis of five important factors:corrosion,external interference,material/construction,natural disasters,and function and operation.Next,the index weight for oil and gas pipeline risk evaluation is computed by applying the improved AHP based on the five-scale method.Then,the TOPSIS of a multi-attribute decision-making theory is studied.The method for determining positive/negative ideal solutions and the normalized equation for benefit/cost indexes is improved to render TOPSIS applicable for the comprehensive risk evaluation of pipelines.The closeness coefficient of oil and gas pipelines is calculated by applying the improved TOPSIS.Finally,the weight and the closeness coefficient are combined to determine the risk level of pipelines.Empirical research using a long-distance pipeline as an example is conducted,and adjustment factors are used to verify the model.Results show that the risk evaluation model of oil and gas pipelines based on the improved AHP–TOPSIS is valuable and feasible.The model comprehensively considers the risk factors of oil and gas pipelines and provides comprehensive,rational,and scientific evaluation results.It represents a new decision-making method for systems engineering in pipeline enterprises and provides a comprehensive understanding of the safety status of oil and gas pipelines.The new system engineering decision-making method is important for preventing oil and gas pipeline accidents.