Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Ar...Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Arctic multiyear sea ice,changes in newly formed sea ice indicate more thermodynamic and dynamic information on Arctic atmosphere–ocean–ice interaction and northern mid–high latitude atmospheric teleconnections. Here, we use a large multimodel ensemble from phase 6 of the Coupled Model Intercomparison Project(CMIP6) to investigate future changes in wintertime newly formed Arctic sea ice. The commonly used model-democracy approach that gives equal weight to each model essentially assumes that all models are independent and equally plausible, which contradicts with the fact that there are large interdependencies in the ensemble and discrepancies in models' performances in reproducing observations. Therefore, instead of using the arithmetic mean of well-performing models or all available models for projections like in previous studies, we employ a newly developed model weighting scheme that weights all models in the ensemble with consideration of their performance and independence to provide more reliable projections. Model democracy leads to evident bias and large intermodel spread in CMIP6 projections of newly formed Arctic sea ice. However, we show that both the bias and the intermodel spread can be effectively reduced by the weighting scheme. Projections from the weighted models indicate that wintertime newly formed Arctic sea ice is likely to increase dramatically until the middle of this century regardless of the emissions scenario.Thereafter, it may decrease(or remain stable) if the Arctic warming crosses a threshold(or is extensively constrained).展开更多
Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a not...Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a notable gap in understanding the intricate interplay between natural and socio-economic factors,especially in the context of spatial heterogeneity and nonlinear impacts of human-land interactions.To address this,our study evaluates the soil erosion vulnerability at a provincial scale,taking Hubei Province as a case study to explore the combined effects of natural and socio-economic factors.We developed an evaluation index system based on 15 indicators of soil erosion vulnerability:exposure,sensitivity,and adaptability.In addition,the combination weighting method was applied to determine index weights,and the spatial interaction was analyzed using spatial autocorrelation,geographical temporally weighted regression and geographical detector.The results showed an overall decreasing soil erosion intensity in Hubei Province during 2000 and 2020.The soil erosion vulnerability increased before 2000 and then.The areas with high soil erosion vulnerability were mainly confined in the central and southern regions of Hubei Province(Xiantao,Tianmen,Qianjiang and Ezhou)with obvious spatial aggregation that intensified over time.Natural factors(habitat quality index)had negative impacts on soil erosion vulnerability,whereas socio-economic factors(population density)showed substantial spatial variability in their influences.There was a positive correlation between soil erosion vulnerability and erosion intensity,with the correlation coefficients ranging from-0.41 and 0.93.The increase of slope was found to enhance the positive correlation between soil erosion vulnerability and intensity.展开更多
This paper takes the assessment and evaluation of computational mechanics course as the background,and constructs a diversified course evaluation system that is student-centered and integrates both quantitative and qu...This paper takes the assessment and evaluation of computational mechanics course as the background,and constructs a diversified course evaluation system that is student-centered and integrates both quantitative and qualitative evaluation methods.The system not only pays attention to students’practical operation and theoretical knowledge mastery but also puts special emphasis on the cultivation of students’innovative abilities.In order to realize a comprehensive and objective evaluation,the assessment and evaluation method of the entropy weight model combining TOPSIS(Technique for Order Preference by Similarity to Ideal Solution)multi-attribute decision analysis and entropy weight theory is adopted,and its validity and practicability are verified through example analysis.This method can not only comprehensively and objectively evaluate students’learning outcomes,but also provide a scientific decision-making basis for curriculum teaching reform.The implementation of this diversified course evaluation system can better reflect the comprehensive ability of students and promote the continuous improvement of teaching quality.展开更多
The method of cloud model with entropy weight was adopted for the prediction of rock burst classification. Some main factors of rock burst including the uniaxial compressive strength (σc), the tensile strength (σ...The method of cloud model with entropy weight was adopted for the prediction of rock burst classification. Some main factors of rock burst including the uniaxial compressive strength (σc), the tensile strength (σt), the tangential stress (σθ), the rock brittleness coefficient (σc/σt), the stress coefficient (σθ /σc) and the elastic energy index (Wet) are chosen to establish evaluation index system. The entropy?cloud model and criterion are obtained through 209 sets of rock burst samples from underground rock projects. The sensitivity of indicators is analyzed and 209 sets of rock burst samples are discriminated by this model. The discriminant results of the entropy-cloud model are compared with those of Bayes, KNN and RF methods. The results show that the sensitivity order of those factors from high to low is σ_θ /σ_c, σ_θ, W_(ct), σ_c/σ_t, σ_t, σ_c, and the entropy-cloud model has higher accuracy than Bayes, K-Nearest Neighbor algorithm (KNN) and Random Forest (RF) methods.展开更多
Leaf area is an important parameter for modeling tree growth and physiological processes of trees. The single young and mature leaf area estimation models of eucalyptus were developed based on leaf fresh weight. In to...Leaf area is an important parameter for modeling tree growth and physiological processes of trees. The single young and mature leaf area estimation models of eucalyptus were developed based on leaf fresh weight. In total, leaf area and leaf weight were measured from 455 fresh leaves of 25 trees of eucalyptus in southern China. The majority of the data (80%) were used for model calibration, and the remaining data (20%) were used for model validation. The linear, compound and power models were tested. Based on goodness of fit, prediction ability and residual performance, we found that linear and power models could best describe the relationship between leaf area and weight for young leaf and mature leaf, respectively. The study provides a simple and reliable method for estimating single-leaf area, which has a good potential in the functional- structural model of eucalyptus.展开更多
Water uptake by crop roots is influenced by many factors. In this study, on the basis of previous studies, root water uptake models were established with the root weight as a dependent variable from the perspective of...Water uptake by crop roots is influenced by many factors. In this study, on the basis of previous studies, root water uptake models were established with the root weight as a dependent variable from the perspective of root biomass changes according to the theory of soil water dynamics. The established models were verified and evaluated using two indicators: root-mean-square error (RMSE) and mean absolute percentage error (MAPE). The results indicated that the annual variation range of root-mean-square error (RMSE) was 0.477-1.231, with an aver- age of 0.810; the annual variation range of mean absolute percentage error (MAPE) was 1.082%-4.052%, with an average of 2.520%, suggesting that the simulation accuracy basically met the requirements. The established numerical models of root water uptake and the compiled program exhibit high simulation accuracy, which can perfectly simulate soil water dynamics during the growth period of crops under nat- ural conditions.展开更多
The veracity of land evaluation is tightly related to the reasonable weights of land evaluation fac- tors. By mapping qualitative linguistic words into a fine-changeable cloud drops and translating the uncertain facto...The veracity of land evaluation is tightly related to the reasonable weights of land evaluation fac- tors. By mapping qualitative linguistic words into a fine-changeable cloud drops and translating the uncertain factor conditions into quantitative values with the uncertain illation based on cloud model, and then, inte- grating correlation analysis, a new way of figuring out the weight of land evaluation factors is proposed. It may solve the limitations of the conventional ways.展开更多
The current research of configurable product disassemblability focuses on disassemblability evaluation and disassembly sequence planning. Little work has been done on quantitative analysis of configurable product disa...The current research of configurable product disassemblability focuses on disassemblability evaluation and disassembly sequence planning. Little work has been done on quantitative analysis of configurable product disassemblability. The disassemblability modeling technology for configurable product based on disassembly constraint relation weighted design structure matrix (DSM) is proposed. Major factors affecting the disassemblability of configurable product are analyzed, and the disassembling degrees between components in configurable product are obtained by calculating disassembly entropies such as joint type, joint quantity, disassembly path, disassembly accessibility and material compatibility. The disassembly constraint relation weighted DSM of configurable product is constructed and configuration modules are formed by matrix decomposition and tearing operations. The disassembly constraint relation in configuration modules is strong coupling, and the disassembly constraint relation between modules is weak coupling, and the disassemblability configuration model is constructed based on configuration module. Finally, taking a hydraulic forging press as an example, the decomposed weak coupling components are used as configuration modules alone, components with a strong coupling are aggregated into configuration modules, and the disassembly sequence of components inside configuration modules is optimized by tearing operation. A disassemblability configuration model of the hydraulic forging press is constructed. By researching the disassemblability modeling technology of product configuration design based on disassembly constraint relation weighted DSM, the disassembly property in maintenance, recycling and reuse of configurable product are optimized.展开更多
With the fast growth of Chinese economic, more and more capital will be invested in environmental projects. How to select the environmental investment projects (alternatives) for obtaining the best environmental qua...With the fast growth of Chinese economic, more and more capital will be invested in environmental projects. How to select the environmental investment projects (alternatives) for obtaining the best environmental quality and economic benefits is an important problem for the decision makers. The purpose of this paper is to develop a decision-making model to rank a finite number of alternatives with several and sometimes conflicting criteria. A model for ranking the projects of municipal sewage treatment plants is proposed by using exports' information and the data of the real projects. And, the ranking result is given based on the PROMETHEE method. Furthermore, by means of the concept of the weight stability intervals (WSI), the sensitivity of the ranking results to the size of criteria values and the change of weights value of criteria are discussed. The result shows that some criteria, such as “proportion of benefit to project cost”, will influence the ranking result of alternatives very strong while others not. The influence are not only from the value of criterion but also from the changing the weight of criterion. So, some criteria such as “proportion of benefit to project cost” are key critera for ranking the projects. Decision makers must be cautious to them.展开更多
Weighting values for different habitat variables used in multi-factor habitat suitability index (HSI) modeling reflect the relative influences of different variables on distribution of fish species. Using the winter-s...Weighting values for different habitat variables used in multi-factor habitat suitability index (HSI) modeling reflect the relative influences of different variables on distribution of fish species. Using the winter-spring cohort of neon flying squid (Ommastrephes bartramii) in the Northwestern Pacific Ocean as an example, we evaluated the impact of different weighting schemes on the HSI models based on sea surface temperature, gradient of sea surface temperature and sea surface height. We compared differences in predicted fishing effort and HSI values resulting from different weighting. The weighting for different habitat variables could greatly influence HSI modeling and should be carefully done based on their relative importance in influencing the resource spatial distribution. Weighting in a multi-factor HSI model should be further studied and optimization methods should be developed to improve forecasting squid spatial distributions.展开更多
The research of groundwater vulnerability is the basic work to protect the groundwater. For utilizing groundwater resource continuably, groundwater vulnerability evaluation is necessary. Useful reference to protect, e...The research of groundwater vulnerability is the basic work to protect the groundwater. For utilizing groundwater resource continuably, groundwater vulnerability evaluation is necessary. Useful reference to protect, exploit and utilize on groundwater resource are provided rationally. According to the real condition of Sanjiang Plain, the indexes system is established based on the traditional DRASTIC model. The new system includes the following seven indexes: Depth of Water, Net Recharge, Aquifer Media, Soil Media, Conductivity of the Aquifer, Land Utilizing Ratio and Populace Density. The related analysis appears that the system is rather reasonable. Because traditional methods, such as analytic hierarchy process and fuzzy mathematics theory, can't be avoided human interference in selection of weights, they could lead to an imprecise result. In order to evaluate the groundwater vulnerability reasonably, entropy weight coefficient method is applied for the first time, which provides a new way to groundwater vulnerability evaluation. The method is a model whose weights are insured by the calculation process, so the artificial disturb can be avoided. It has been used to evaluate the groundwater vulnerability in Sanjiang Plain. The satisfied result is acquired. Comparably, the same result is acquired by the other method named projection pursuit evaluation based on real-coded accelerating genetic algorithm. It shows that entropy weight coefficient method is applicable on groundwater vulnerability evaluation. The evaluation result can provide reference on the decision-making departments.展开更多
Precipitation over the Tibetan Plateau(TP)is important to local and downstream ecosystems.Based on a weighting method considering model skill and independence,changes in the TP precipitation for near-term(2021-40),mid...Precipitation over the Tibetan Plateau(TP)is important to local and downstream ecosystems.Based on a weighting method considering model skill and independence,changes in the TP precipitation for near-term(2021-40),mid-term(2041-60)and long-term(2081-2100)under shared socio-economic pathways(SSP1-1.9,SSP1-2.6,SSP2-4.5,SSSP3-7.0,SSP5-8.5)are projected with 27 models from the latest Sixth Phase of the Couple Model Intercomparison Project.The annual mean precipitation is projected to increase by 7.4%-21.6%under five SSPs with a stronger change in the northern TP by the end of the 21st century relative to the present climatology.Changes in the TP precipitation at seasonal scales show a similar moistening trend to that of annual mean precipitation,except for the drying trend in winter precipitation along the southern edges of the TP.Weighting generally suggests a slightly stronger increase in TP precipitation with reduced model uncertainty compared to equally-weighted projections.The effect of weighting exhibits spatial and seasonal differences.Seasonally,weighting leads to a prevailing enhancement of increase in spring precipitation over the TP.Spatially,the influence of weighting is more remarkable over the northwestern TP regarding the annual,summer and autumn precipitation.Differences between weighted and original MMEs can give us more confidence in a stronger increase in precipitation over the TP,especially for the season of spring and the region of the northwestern TP,which requires additional attention in decision making.展开更多
Earthquake-triggered landslides have aroused widespread attention because of their tremendous ability to harm people's lives and properties.The best way to avoid and mitigate their damage is to develop landslide h...Earthquake-triggered landslides have aroused widespread attention because of their tremendous ability to harm people's lives and properties.The best way to avoid and mitigate their damage is to develop landslide hazard maps and make them available to the public in advance of an earthquake.Future construction can then be built according to the level of hazard and existing structures can be retrofit as necessary.During recent years various approaches have been made to develop landslide hazard maps using statistical analysis or physical models.However,these methods have limitations.This study introduces a new GIS-based approach,using the contributing weight model,to evaluate the hazard of seismically-induced landslides.In this study,the city and surrounding area of Dujiangyan was selected as the research area because of its moderate-high seismic activity.The parameters incorporated into the model that related to the probability of landslide occurrence were:slope gradient,slope aspect,geomorphology,lithology,base level,surface roughness,earthquake intensity,fault proximity,drainage proximity,and road proximity.The parameters were converted into raster data format with a resolution of 25×25m2 pixels.Analysis of the GIS correlations shows that the highest earthquake-induced landslide hazard areas are mainly in the hills and in some of the moderately steep mountainous areas of central Dujiangyan.The highest hazard zone covers an area of 11.1% of the study area,and the density distribution of seismically-induced landslides was 3.025/km2 from the 2008 Wenchuan earthquake.The moderately hazardous areas are mainly distributed within the moderately steep mountainous regions of the northern and southeastern parts of the study area and the hills of the northeastern part;covering 32.0% of the study area and with a density distribution of 2.123/km2 resulting from the Wenchuan earthquake.The lowest hazard areas are mainly distributed in the topographically flat plain in the northeastern part and some of the relatively gently slopes in the moderately steep mountainous areas of the northern part of Dujiangyan and the surrounding area.The lowest hazard areas cover 56.9% of the study area and exhibited landslide densities of 0.941/km2 and less from the Wenchuan earthquake.The quality of the hazard map was validated using a comparison with the distribution of landslides that were cataloged as occurring from the Wenchuan earthquake.43.1% of the study area consists of high and moderate hazardous zones,and these regions include 83.5% of landslides caused by the Wenchuan earthquake.The successful analysis shows that the contributing weight model can be effective for earthquake-triggered landslide hazard appraisal.The model's results can provide the basis for risk management and regional planning is.展开更多
During geodetic monitoring with GNSS technology one of important steps is the correct processing and analysis of the measured displacements. We used the processing method of Kalman filter smoothing algorithm, which al...During geodetic monitoring with GNSS technology one of important steps is the correct processing and analysis of the measured displacements. We used the processing method of Kalman filter smoothing algorithm, which allows to evaluate not only displacements, but also the speed, acceleration, and other characteristics of the deformation model. One of the important issues is the calculation of the obser- vations weight matrix in the Kalman filter. Recurrence algorithm of Kalman filtering can calculate and specify the weights during processing. However, the weights obtained in such way do not always exactly correspond to the actual observation accuracy. We established the observations weights based on the accuracy of baseline measurements. In the presented study, we offered and investigated different models of establishing the accuracy of the baselines. The offered models and the processing of the measured displacements were tested on an experimentally geodetic GNSS network. The research results show that despite of different weight models, changing weights up to 2 times do not change Kalman filtering ac- curacy extremely. The significant improvements for Kalman filtering accuracy for baselines shorter than 10 km were not got. Therefore, for typical GNSS monitoring networks with baseline range 10-15 km, we recommend to use any kind of models. The compulsory condition for getting correct and reliable results is checking results on blunders. For baselines, which are longer than 15 km we propose to use weight model which include baseline standard deviation from network adjustment and corrections for baseline length and its accuracy.展开更多
We study the detailed malicious code propagating process in scale-free networks with link weights that denotes traffic between two nodes. It is found that the propagating velocity reaches a peak rapidly then decays in...We study the detailed malicious code propagating process in scale-free networks with link weights that denotes traffic between two nodes. It is found that the propagating velocity reaches a peak rapidly then decays in a power-law form, which is different from the well-known result in unweighted network case. Simulation results show that the nodes with larger strength are preferential to be infected, but the hierarchical dynamics are not clearly found. The simulation results also show that larger dispersion of weight of networks leads to slower propagating, which indicates that malicious code propagates more quickly in unweighted scale-free networks than in weighted scale-free networks under the same condition. These results show that not only the topology of networks but also the link weights affect the malicious propagating process.展开更多
This study used spatial autoregression(SAR)model and geographically weighted regression(GWR)model to model the spatial patterns of farmland density and its temporal change in Gucheng County,Hubei Province,China in 199...This study used spatial autoregression(SAR)model and geographically weighted regression(GWR)model to model the spatial patterns of farmland density and its temporal change in Gucheng County,Hubei Province,China in 1999 and 2009,and discussed the difference between global and local spatial autocorrelations in terms of spatial heterogeneity and non-stationarity.Results showed that strong spatial positive correlations existed in the spatial distributions of farmland density,its temporal change and the driving factors,and the coefficients of spatial autocorrelations decreased as the spatial lag distance increased.SAR models revealed the global spatial relations between dependent and independent variables,while the GWR model showed the spatially varying fitting degree and local weighting coefficients of driving factors and farmland indices(i.e.,farmland density and temporal change).The GWR model has smooth process when constructing the farmland spatial model.The coefficients of GWR model can show the accurate influence degrees of different driving factors on the farmland at different geographical locations.The performance indices of GWR model showed that GWR model produced more accurate simulation results than other models at different times,and the improvement precision of GWR model was obvious.The global and local farmland models used in this study showed different characteristics in the spatial distributions of farmland indices at different scales,which may provide the theoretical basis for farmland protection from the influence of different driving factors.展开更多
Existing“evaluation indicators”are selected and combined to build a model to support the optimization of shale gas horizontal wells.Towards this end,different“weighting methods”,including AHP and the so-called ent...Existing“evaluation indicators”are selected and combined to build a model to support the optimization of shale gas horizontal wells.Towards this end,different“weighting methods”,including AHP and the so-called entropy method,are combined in the frame of the game theory.Using a relevant test case for the implementation of the model,it is shown that the horizontal section of the considered well is in the middle sweet spot area with good physical properties and fracturing ability.In comparison with the FSI(flow scanner Image)gas production profile,the new model seems to display better abilities for the optimization of horizontal wells.展开更多
In this study,to develop a benefit-allocation model,in-depth analysis of a distributed photovoltaic-powergeneration carport and energy-storage charging-pile project was performed;the model was developed using Shapley ...In this study,to develop a benefit-allocation model,in-depth analysis of a distributed photovoltaic-powergeneration carport and energy-storage charging-pile project was performed;the model was developed using Shapley integrated-empowerment benefit-distribution method.First,through literature survey and expert interview to identify the risk factors at various stages of the project,a dynamic risk-factor indicator system is developed.Second,to obtain a more meaningful risk-calculation result,the subjective and objective weights are combined,the weights of the risk factors at each stage are determined by the expert scoring method and entropy weight method,and the interest distribution model based on multi-dimensional risk factors is established.Finally,an example is used to verify the rationality of the method for the benefit distribution of the charging-pile project.The results of the example indicate that the limitations of the Shapley method can be reasonably avoided,and the applicability of the model for the benefit distribution of the charging-pile project is verified.展开更多
This paper studies the relationship between accessibility and housing prices in Dalian by using an improved geographically weighted regression model and house prices, traffic, remote sensing images, etc. Multi-source ...This paper studies the relationship between accessibility and housing prices in Dalian by using an improved geographically weighted regression model and house prices, traffic, remote sensing images, etc. Multi-source data improves the accuracy of the spatial differentiation that reflects the impact of traffic accessibility on house prices. The results are as follows: first, the average house price is 12 436 yuan(RMB)/m^2, and reveals a declining trend from coastal areas to inland areas. The exception was Guilin Street, which demonstrates a local peak of house prices that decreases from the center of the street to its periphery. Second, the accessibility value is 33 minutes on average, excluding northern and eastern fringe areas, which was over 50 minutes. Third, the significant spatial correlation coefficient between accessibility and house prices is 0.423, and the coefficient increases in the southeastern direction. The strongest impact of accessibility on house prices is in the southeastern coast, and can be seen in the Lehua, Yingke, and Hushan communities, while the weakest impact is in the northwestern fringe, and can be seen in the Yingchengzi, Xixiaomo, and Daheishi community areas.展开更多
With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectiv...With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectively handled by traditional monitoring methods such as linear discriminant analysis(LDA),principal component analysis(PCA)and partial least square(PLS)analysis.Recently,a mixed hidden naive Bayesian model(MHNBM)is developed for the first time to utilize both two-valued and continuous variables for abnormality monitoring.Although the MHNBM is effective,it still has some shortcomings that need to be improved.For the MHNBM,the variables with greater correlation to other variables have greater weights,which can not guarantee greater weights are assigned to the more discriminating variables.In addition,the conditional P(x j|x j′,y=k)probability must be computed based on historical data.When the training data is scarce,the conditional probability between continuous variables tends to be uniformly distributed,which affects the performance of MHNBM.Here a novel feature weighted mixed naive Bayes model(FWMNBM)is developed to overcome the above shortcomings.For the FWMNBM,the variables that are more correlated to the class have greater weights,which makes the more discriminating variables contribute more to the model.At the same time,FWMNBM does not have to calculate the conditional probability between variables,thus it is less restricted by the number of training data samples.Compared with the MHNBM,the FWMNBM has better performance,and its effectiveness is validated through numerical cases of a simulation example and a practical case of the Zhoushan thermal power plant(ZTPP),China.展开更多
基金supported by the Chinese–Norwegian Collaboration Projects within Climate Systems jointly funded by the National Key Research and Development Program of China (Grant No.2022YFE0106800)the Research Council of Norway funded project,MAPARC (Grant No.328943)+2 种基金the support from the Research Council of Norway funded project,COMBINED (Grant No.328935)the National Natural Science Foundation of China (Grant No.42075030)the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX23_1314)。
文摘Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Arctic multiyear sea ice,changes in newly formed sea ice indicate more thermodynamic and dynamic information on Arctic atmosphere–ocean–ice interaction and northern mid–high latitude atmospheric teleconnections. Here, we use a large multimodel ensemble from phase 6 of the Coupled Model Intercomparison Project(CMIP6) to investigate future changes in wintertime newly formed Arctic sea ice. The commonly used model-democracy approach that gives equal weight to each model essentially assumes that all models are independent and equally plausible, which contradicts with the fact that there are large interdependencies in the ensemble and discrepancies in models' performances in reproducing observations. Therefore, instead of using the arithmetic mean of well-performing models or all available models for projections like in previous studies, we employ a newly developed model weighting scheme that weights all models in the ensemble with consideration of their performance and independence to provide more reliable projections. Model democracy leads to evident bias and large intermodel spread in CMIP6 projections of newly formed Arctic sea ice. However, we show that both the bias and the intermodel spread can be effectively reduced by the weighting scheme. Projections from the weighted models indicate that wintertime newly formed Arctic sea ice is likely to increase dramatically until the middle of this century regardless of the emissions scenario.Thereafter, it may decrease(or remain stable) if the Arctic warming crosses a threshold(or is extensively constrained).
基金supported by the National Natural Science Foundation of China(42377354)the Natural Science Foundation of Hubei province(2024AFB951)the Chunhui Plan Cooperation Research Project of the Chinese Ministry of Education(202200199).
文摘Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a notable gap in understanding the intricate interplay between natural and socio-economic factors,especially in the context of spatial heterogeneity and nonlinear impacts of human-land interactions.To address this,our study evaluates the soil erosion vulnerability at a provincial scale,taking Hubei Province as a case study to explore the combined effects of natural and socio-economic factors.We developed an evaluation index system based on 15 indicators of soil erosion vulnerability:exposure,sensitivity,and adaptability.In addition,the combination weighting method was applied to determine index weights,and the spatial interaction was analyzed using spatial autocorrelation,geographical temporally weighted regression and geographical detector.The results showed an overall decreasing soil erosion intensity in Hubei Province during 2000 and 2020.The soil erosion vulnerability increased before 2000 and then.The areas with high soil erosion vulnerability were mainly confined in the central and southern regions of Hubei Province(Xiantao,Tianmen,Qianjiang and Ezhou)with obvious spatial aggregation that intensified over time.Natural factors(habitat quality index)had negative impacts on soil erosion vulnerability,whereas socio-economic factors(population density)showed substantial spatial variability in their influences.There was a positive correlation between soil erosion vulnerability and erosion intensity,with the correlation coefficients ranging from-0.41 and 0.93.The increase of slope was found to enhance the positive correlation between soil erosion vulnerability and intensity.
基金2024 Key Project of Teaching Reform Research and Practice in Higher Education in Henan Province“Exploration and Practice of Training Model for Outstanding Students in Basic Mechanics Discipline”(2024SJGLX094)Henan Province“Mechanics+X”Basic Discipline Outstanding Student Training Base2024 Research and Practice Project of Higher Education Teaching Reform in Henan University of Science and Technology“Optimization and Practice of Ability-Oriented Teaching Mode for Computational Mechanics Course:A New Exploration in Cultivating Practical Simulation Engineers”(2024BK074)。
文摘This paper takes the assessment and evaluation of computational mechanics course as the background,and constructs a diversified course evaluation system that is student-centered and integrates both quantitative and qualitative evaluation methods.The system not only pays attention to students’practical operation and theoretical knowledge mastery but also puts special emphasis on the cultivation of students’innovative abilities.In order to realize a comprehensive and objective evaluation,the assessment and evaluation method of the entropy weight model combining TOPSIS(Technique for Order Preference by Similarity to Ideal Solution)multi-attribute decision analysis and entropy weight theory is adopted,and its validity and practicability are verified through example analysis.This method can not only comprehensively and objectively evaluate students’learning outcomes,but also provide a scientific decision-making basis for curriculum teaching reform.The implementation of this diversified course evaluation system can better reflect the comprehensive ability of students and promote the continuous improvement of teaching quality.
基金Projects(51474252,51274253)supported by the National Natural Science Foundation of ChinaProject(2015CX005)supported by the Innovation Driven Plan of Central South University,ChinaProject(2016zzts095)supported by the Fundamental Research Funds for the Central Universities,China
文摘The method of cloud model with entropy weight was adopted for the prediction of rock burst classification. Some main factors of rock burst including the uniaxial compressive strength (σc), the tensile strength (σt), the tangential stress (σθ), the rock brittleness coefficient (σc/σt), the stress coefficient (σθ /σc) and the elastic energy index (Wet) are chosen to establish evaluation index system. The entropy?cloud model and criterion are obtained through 209 sets of rock burst samples from underground rock projects. The sensitivity of indicators is analyzed and 209 sets of rock burst samples are discriminated by this model. The discriminant results of the entropy-cloud model are compared with those of Bayes, KNN and RF methods. The results show that the sensitivity order of those factors from high to low is σ_θ /σ_c, σ_θ, W_(ct), σ_c/σ_t, σ_t, σ_c, and the entropy-cloud model has higher accuracy than Bayes, K-Nearest Neighbor algorithm (KNN) and Random Forest (RF) methods.
文摘Leaf area is an important parameter for modeling tree growth and physiological processes of trees. The single young and mature leaf area estimation models of eucalyptus were developed based on leaf fresh weight. In total, leaf area and leaf weight were measured from 455 fresh leaves of 25 trees of eucalyptus in southern China. The majority of the data (80%) were used for model calibration, and the remaining data (20%) were used for model validation. The linear, compound and power models were tested. Based on goodness of fit, prediction ability and residual performance, we found that linear and power models could best describe the relationship between leaf area and weight for young leaf and mature leaf, respectively. The study provides a simple and reliable method for estimating single-leaf area, which has a good potential in the functional- structural model of eucalyptus.
文摘Water uptake by crop roots is influenced by many factors. In this study, on the basis of previous studies, root water uptake models were established with the root weight as a dependent variable from the perspective of root biomass changes according to the theory of soil water dynamics. The established models were verified and evaluated using two indicators: root-mean-square error (RMSE) and mean absolute percentage error (MAPE). The results indicated that the annual variation range of root-mean-square error (RMSE) was 0.477-1.231, with an aver- age of 0.810; the annual variation range of mean absolute percentage error (MAPE) was 1.082%-4.052%, with an average of 2.520%, suggesting that the simulation accuracy basically met the requirements. The established numerical models of root water uptake and the compiled program exhibit high simulation accuracy, which can perfectly simulate soil water dynamics during the growth period of crops under nat- ural conditions.
文摘The veracity of land evaluation is tightly related to the reasonable weights of land evaluation fac- tors. By mapping qualitative linguistic words into a fine-changeable cloud drops and translating the uncertain factor conditions into quantitative values with the uncertain illation based on cloud model, and then, inte- grating correlation analysis, a new way of figuring out the weight of land evaluation factors is proposed. It may solve the limitations of the conventional ways.
基金Supported by National Natural Science Foundation of China(Grant No.51375437)Zhejiang Provincial Natural Science Foundation of China(Grant No.LY12E05019)
文摘The current research of configurable product disassemblability focuses on disassemblability evaluation and disassembly sequence planning. Little work has been done on quantitative analysis of configurable product disassemblability. The disassemblability modeling technology for configurable product based on disassembly constraint relation weighted design structure matrix (DSM) is proposed. Major factors affecting the disassemblability of configurable product are analyzed, and the disassembling degrees between components in configurable product are obtained by calculating disassembly entropies such as joint type, joint quantity, disassembly path, disassembly accessibility and material compatibility. The disassembly constraint relation weighted DSM of configurable product is constructed and configuration modules are formed by matrix decomposition and tearing operations. The disassembly constraint relation in configuration modules is strong coupling, and the disassembly constraint relation between modules is weak coupling, and the disassemblability configuration model is constructed based on configuration module. Finally, taking a hydraulic forging press as an example, the decomposed weak coupling components are used as configuration modules alone, components with a strong coupling are aggregated into configuration modules, and the disassembly sequence of components inside configuration modules is optimized by tearing operation. A disassemblability configuration model of the hydraulic forging press is constructed. By researching the disassemblability modeling technology of product configuration design based on disassembly constraint relation weighted DSM, the disassembly property in maintenance, recycling and reuse of configurable product are optimized.
基金Shanghai Leading Academic Discipline Project (T0502)Shanghai Municipal Educational Commission Project (05EZ32).
文摘With the fast growth of Chinese economic, more and more capital will be invested in environmental projects. How to select the environmental investment projects (alternatives) for obtaining the best environmental quality and economic benefits is an important problem for the decision makers. The purpose of this paper is to develop a decision-making model to rank a finite number of alternatives with several and sometimes conflicting criteria. A model for ranking the projects of municipal sewage treatment plants is proposed by using exports' information and the data of the real projects. And, the ranking result is given based on the PROMETHEE method. Furthermore, by means of the concept of the weight stability intervals (WSI), the sensitivity of the ranking results to the size of criteria values and the change of weights value of criteria are discussed. The result shows that some criteria, such as “proportion of benefit to project cost”, will influence the ranking result of alternatives very strong while others not. The influence are not only from the value of criterion but also from the changing the weight of criterion. So, some criteria such as “proportion of benefit to project cost” are key critera for ranking the projects. Decision makers must be cautious to them.
基金supported by the National 863 project (2007AA092201 2007AA092202)+4 种基金National Development and Reform Commission Project (2060403)"Shu Guang" Project (08GG14) from Shanghai Municipal Education CommissionShanghai Leading Academic Discipline Project (Project S30702)supported by the National Distantwater Fisheries Engineering Research Center, and Scientific Observing and Experimental Station of Oceanic Fishery Resources, Ministry of Agriculture, ChinaYong Chen’s involvement in the project was supported by the Shanghai Dongfang Scholar Program
文摘Weighting values for different habitat variables used in multi-factor habitat suitability index (HSI) modeling reflect the relative influences of different variables on distribution of fish species. Using the winter-spring cohort of neon flying squid (Ommastrephes bartramii) in the Northwestern Pacific Ocean as an example, we evaluated the impact of different weighting schemes on the HSI models based on sea surface temperature, gradient of sea surface temperature and sea surface height. We compared differences in predicted fishing effort and HSI values resulting from different weighting. The weighting for different habitat variables could greatly influence HSI modeling and should be carefully done based on their relative importance in influencing the resource spatial distribution. Weighting in a multi-factor HSI model should be further studied and optimization methods should be developed to improve forecasting squid spatial distributions.
基金Supported by the National Natural Science Foundation of China(30400275)the Tackle Key Problems of Heilongjiang Province(the Hobbledehoy Science Fund of Heilongjiang Province)(QC04C28)
文摘The research of groundwater vulnerability is the basic work to protect the groundwater. For utilizing groundwater resource continuably, groundwater vulnerability evaluation is necessary. Useful reference to protect, exploit and utilize on groundwater resource are provided rationally. According to the real condition of Sanjiang Plain, the indexes system is established based on the traditional DRASTIC model. The new system includes the following seven indexes: Depth of Water, Net Recharge, Aquifer Media, Soil Media, Conductivity of the Aquifer, Land Utilizing Ratio and Populace Density. The related analysis appears that the system is rather reasonable. Because traditional methods, such as analytic hierarchy process and fuzzy mathematics theory, can't be avoided human interference in selection of weights, they could lead to an imprecise result. In order to evaluate the groundwater vulnerability reasonably, entropy weight coefficient method is applied for the first time, which provides a new way to groundwater vulnerability evaluation. The method is a model whose weights are insured by the calculation process, so the artificial disturb can be avoided. It has been used to evaluate the groundwater vulnerability in Sanjiang Plain. The satisfied result is acquired. Comparably, the same result is acquired by the other method named projection pursuit evaluation based on real-coded accelerating genetic algorithm. It shows that entropy weight coefficient method is applicable on groundwater vulnerability evaluation. The evaluation result can provide reference on the decision-making departments.
基金the Strate-gic Priority Research Program of the Chinese Academy of Sci-ences under Grant No.XDA20060102the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(Grant No 2019QZKK0102)the National Natural Science Foundation of China under Grant No.41988101 and K.C.WONG Education Foun-dation.
文摘Precipitation over the Tibetan Plateau(TP)is important to local and downstream ecosystems.Based on a weighting method considering model skill and independence,changes in the TP precipitation for near-term(2021-40),mid-term(2041-60)and long-term(2081-2100)under shared socio-economic pathways(SSP1-1.9,SSP1-2.6,SSP2-4.5,SSSP3-7.0,SSP5-8.5)are projected with 27 models from the latest Sixth Phase of the Couple Model Intercomparison Project.The annual mean precipitation is projected to increase by 7.4%-21.6%under five SSPs with a stronger change in the northern TP by the end of the 21st century relative to the present climatology.Changes in the TP precipitation at seasonal scales show a similar moistening trend to that of annual mean precipitation,except for the drying trend in winter precipitation along the southern edges of the TP.Weighting generally suggests a slightly stronger increase in TP precipitation with reduced model uncertainty compared to equally-weighted projections.The effect of weighting exhibits spatial and seasonal differences.Seasonally,weighting leads to a prevailing enhancement of increase in spring precipitation over the TP.Spatially,the influence of weighting is more remarkable over the northwestern TP regarding the annual,summer and autumn precipitation.Differences between weighted and original MMEs can give us more confidence in a stronger increase in precipitation over the TP,especially for the season of spring and the region of the northwestern TP,which requires additional attention in decision making.
基金supported by the 973 Program of China (Grant No.2008CB425802)the International Cooperation Program of the Ministry of Science and Technology of China (Grant No.2007DFA21150 and 2009DFB20196)
文摘Earthquake-triggered landslides have aroused widespread attention because of their tremendous ability to harm people's lives and properties.The best way to avoid and mitigate their damage is to develop landslide hazard maps and make them available to the public in advance of an earthquake.Future construction can then be built according to the level of hazard and existing structures can be retrofit as necessary.During recent years various approaches have been made to develop landslide hazard maps using statistical analysis or physical models.However,these methods have limitations.This study introduces a new GIS-based approach,using the contributing weight model,to evaluate the hazard of seismically-induced landslides.In this study,the city and surrounding area of Dujiangyan was selected as the research area because of its moderate-high seismic activity.The parameters incorporated into the model that related to the probability of landslide occurrence were:slope gradient,slope aspect,geomorphology,lithology,base level,surface roughness,earthquake intensity,fault proximity,drainage proximity,and road proximity.The parameters were converted into raster data format with a resolution of 25×25m2 pixels.Analysis of the GIS correlations shows that the highest earthquake-induced landslide hazard areas are mainly in the hills and in some of the moderately steep mountainous areas of central Dujiangyan.The highest hazard zone covers an area of 11.1% of the study area,and the density distribution of seismically-induced landslides was 3.025/km2 from the 2008 Wenchuan earthquake.The moderately hazardous areas are mainly distributed within the moderately steep mountainous regions of the northern and southeastern parts of the study area and the hills of the northeastern part;covering 32.0% of the study area and with a density distribution of 2.123/km2 resulting from the Wenchuan earthquake.The lowest hazard areas are mainly distributed in the topographically flat plain in the northeastern part and some of the relatively gently slopes in the moderately steep mountainous areas of the northern part of Dujiangyan and the surrounding area.The lowest hazard areas cover 56.9% of the study area and exhibited landslide densities of 0.941/km2 and less from the Wenchuan earthquake.The quality of the hazard map was validated using a comparison with the distribution of landslides that were cataloged as occurring from the Wenchuan earthquake.43.1% of the study area consists of high and moderate hazardous zones,and these regions include 83.5% of landslides caused by the Wenchuan earthquake.The successful analysis shows that the contributing weight model can be effective for earthquake-triggered landslide hazard appraisal.The model's results can provide the basis for risk management and regional planning is.
文摘During geodetic monitoring with GNSS technology one of important steps is the correct processing and analysis of the measured displacements. We used the processing method of Kalman filter smoothing algorithm, which allows to evaluate not only displacements, but also the speed, acceleration, and other characteristics of the deformation model. One of the important issues is the calculation of the obser- vations weight matrix in the Kalman filter. Recurrence algorithm of Kalman filtering can calculate and specify the weights during processing. However, the weights obtained in such way do not always exactly correspond to the actual observation accuracy. We established the observations weights based on the accuracy of baseline measurements. In the presented study, we offered and investigated different models of establishing the accuracy of the baselines. The offered models and the processing of the measured displacements were tested on an experimentally geodetic GNSS network. The research results show that despite of different weight models, changing weights up to 2 times do not change Kalman filtering ac- curacy extremely. The significant improvements for Kalman filtering accuracy for baselines shorter than 10 km were not got. Therefore, for typical GNSS monitoring networks with baseline range 10-15 km, we recommend to use any kind of models. The compulsory condition for getting correct and reliable results is checking results on blunders. For baselines, which are longer than 15 km we propose to use weight model which include baseline standard deviation from network adjustment and corrections for baseline length and its accuracy.
基金Supported by the National Natural Science Foundation of China (90204012, 60573036) and the Natural Science Foundation of Hebei Province (F2006000177)
文摘We study the detailed malicious code propagating process in scale-free networks with link weights that denotes traffic between two nodes. It is found that the propagating velocity reaches a peak rapidly then decays in a power-law form, which is different from the well-known result in unweighted network case. Simulation results show that the nodes with larger strength are preferential to be infected, but the hierarchical dynamics are not clearly found. The simulation results also show that larger dispersion of weight of networks leads to slower propagating, which indicates that malicious code propagates more quickly in unweighted scale-free networks than in weighted scale-free networks under the same condition. These results show that not only the topology of networks but also the link weights affect the malicious propagating process.
基金Under the auspices of National Natural Science Foundation of China(No.40601073,41101192,41201571)Fundamental Research Funds for the Central Universities(No.2011PY112,2011QC041,2011QC091)Huazhong Agricultural University Scientific&Technological Self-innovation Foundation(No.2011SC21)
文摘This study used spatial autoregression(SAR)model and geographically weighted regression(GWR)model to model the spatial patterns of farmland density and its temporal change in Gucheng County,Hubei Province,China in 1999 and 2009,and discussed the difference between global and local spatial autocorrelations in terms of spatial heterogeneity and non-stationarity.Results showed that strong spatial positive correlations existed in the spatial distributions of farmland density,its temporal change and the driving factors,and the coefficients of spatial autocorrelations decreased as the spatial lag distance increased.SAR models revealed the global spatial relations between dependent and independent variables,while the GWR model showed the spatially varying fitting degree and local weighting coefficients of driving factors and farmland indices(i.e.,farmland density and temporal change).The GWR model has smooth process when constructing the farmland spatial model.The coefficients of GWR model can show the accurate influence degrees of different driving factors on the farmland at different geographical locations.The performance indices of GWR model showed that GWR model produced more accurate simulation results than other models at different times,and the improvement precision of GWR model was obvious.The global and local farmland models used in this study showed different characteristics in the spatial distributions of farmland indices at different scales,which may provide the theoretical basis for farmland protection from the influence of different driving factors.
基金supported by the National Science and Technology Major Project during the 13th Five-Year Plan under grant(2016ZX05060-019)the National Science and Technology Major Project during the 13th Five-Year Plan under grant(2016ZX05060004).
文摘Existing“evaluation indicators”are selected and combined to build a model to support the optimization of shale gas horizontal wells.Towards this end,different“weighting methods”,including AHP and the so-called entropy method,are combined in the frame of the game theory.Using a relevant test case for the implementation of the model,it is shown that the horizontal section of the considered well is in the middle sweet spot area with good physical properties and fracturing ability.In comparison with the FSI(flow scanner Image)gas production profile,the new model seems to display better abilities for the optimization of horizontal wells.
基金Supported by Science and Technology Foundation of SGCC Research and development of key models for decision support of energy internet companies(NO.SGSDJY00GPJS1900057).
文摘In this study,to develop a benefit-allocation model,in-depth analysis of a distributed photovoltaic-powergeneration carport and energy-storage charging-pile project was performed;the model was developed using Shapley integrated-empowerment benefit-distribution method.First,through literature survey and expert interview to identify the risk factors at various stages of the project,a dynamic risk-factor indicator system is developed.Second,to obtain a more meaningful risk-calculation result,the subjective and objective weights are combined,the weights of the risk factors at each stage are determined by the expert scoring method and entropy weight method,and the interest distribution model based on multi-dimensional risk factors is established.Finally,an example is used to verify the rationality of the method for the benefit distribution of the charging-pile project.The results of the example indicate that the limitations of the Shapley method can be reasonably avoided,and the applicability of the model for the benefit distribution of the charging-pile project is verified.
基金Under the auspices of National Natural Science Foundation of China(No.41471140,41771178)Liaoning Province Outstanding Youth Program(No.LJQ2015058)
文摘This paper studies the relationship between accessibility and housing prices in Dalian by using an improved geographically weighted regression model and house prices, traffic, remote sensing images, etc. Multi-source data improves the accuracy of the spatial differentiation that reflects the impact of traffic accessibility on house prices. The results are as follows: first, the average house price is 12 436 yuan(RMB)/m^2, and reveals a declining trend from coastal areas to inland areas. The exception was Guilin Street, which demonstrates a local peak of house prices that decreases from the center of the street to its periphery. Second, the accessibility value is 33 minutes on average, excluding northern and eastern fringe areas, which was over 50 minutes. Third, the significant spatial correlation coefficient between accessibility and house prices is 0.423, and the coefficient increases in the southeastern direction. The strongest impact of accessibility on house prices is in the southeastern coast, and can be seen in the Lehua, Yingke, and Hushan communities, while the weakest impact is in the northwestern fringe, and can be seen in the Yingchengzi, Xixiaomo, and Daheishi community areas.
基金supported by the National Natural Science Foundation of China(62033008,61873143)。
文摘With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectively handled by traditional monitoring methods such as linear discriminant analysis(LDA),principal component analysis(PCA)and partial least square(PLS)analysis.Recently,a mixed hidden naive Bayesian model(MHNBM)is developed for the first time to utilize both two-valued and continuous variables for abnormality monitoring.Although the MHNBM is effective,it still has some shortcomings that need to be improved.For the MHNBM,the variables with greater correlation to other variables have greater weights,which can not guarantee greater weights are assigned to the more discriminating variables.In addition,the conditional P(x j|x j′,y=k)probability must be computed based on historical data.When the training data is scarce,the conditional probability between continuous variables tends to be uniformly distributed,which affects the performance of MHNBM.Here a novel feature weighted mixed naive Bayes model(FWMNBM)is developed to overcome the above shortcomings.For the FWMNBM,the variables that are more correlated to the class have greater weights,which makes the more discriminating variables contribute more to the model.At the same time,FWMNBM does not have to calculate the conditional probability between variables,thus it is less restricted by the number of training data samples.Compared with the MHNBM,the FWMNBM has better performance,and its effectiveness is validated through numerical cases of a simulation example and a practical case of the Zhoushan thermal power plant(ZTPP),China.