Electro-copolymerized film containing ruthenium complexes as electron-transfer(or redox)mediators and water-oxidation catalysts by an oxidative copolymerization method is presented.The addition of the redox mediator s...Electro-copolymerized film containing ruthenium complexes as electron-transfer(or redox)mediators and water-oxidation catalysts by an oxidative copolymerization method is presented.The addition of the redox mediator significantly improved the electrocatalytic water-oxidation activity and reduced the overpotential to 220 mV.The prepared electrode showed a water-oxidation catalytic rate constant kobs of 31.7 s^(-1)and an initial turnover frequency of 1.01 s^(-1)in 1000 s by potential electrolysis at 1.7 V applied bias vs NHE(normal hydrogen electrode).The kinetic isotope effect study suggests that the catalytic water oxidation reaction on the electrode surface occurs via a bimolecular coupling mechanism.展开更多
CO_(2) methanation has a potential in the large-scale utilization of carbon dioxide.It has also been considered to be useful for the renewable energy storage.The commercial pipeline for natural gas transportation can ...CO_(2) methanation has a potential in the large-scale utilization of carbon dioxide.It has also been considered to be useful for the renewable energy storage.The commercial pipeline for natural gas transportation can be directly applied for the methane product of CO_(2) methanation.The supported ruthenium(Ru)catalyst has been confirmed to be active and stable for CO_(2) methanation with its high ability in the dissociation of hydrogen and the strong binding of carbon monoxide.CO_(2) methanation over the supported Ru catalyst is structure sensitive.The size of the Ru catalyst and the support have significant effects on the activity and the mechanism.A significant challenge re-mained is the structural controllable preparation of the supported Ru catalyst toward a sufficiently high low-temperature activity.In this review,the recent progresses in the investigations of the supported Ru catalysts for CO_(2) methanation are summarized.The challenges and the future devel-opments are also discussed.展开更多
Preparation of high purity ruthenium nitrosyl nitrate using spent Ru-Zn/ZrO_(2)catalyst was studied,including melting and leaching to obtain potassium ruthenate solution,reduction,dissolving,concentrating and drying t...Preparation of high purity ruthenium nitrosyl nitrate using spent Ru-Zn/ZrO_(2)catalyst was studied,including melting and leaching to obtain potassium ruthenate solution,reduction,dissolving,concentrating and drying to obtain ruthenium trichloride,nitrosation and hydrolysis to obtain ruthenium nitrosyl hydroxide,removing of K^(+)and Cl^(-),and neutralization with nitric acid.The effects of temperature,concentration,time and pH on the yield and purity of intermediates and final product were studied,and the optimum process conditions were obtained.The yield of ruthenium nitrosyl nitrate is 92%,the content of ruthenium in high purity product is 32.16%,and the content of Cl^(-)and K^(+)are much less than 0.005%.The reaction kinetics of ruthenium nitrosyl chloride to ruthenium nitrosyl hydroxide was studied.The reaction orders of Ru(NO)Cl_(3)at 40,55 and 70℃are 0.39,0.37 and 0.39,respectively,while those of KOH are 0.16,0.15 and 0.17,respectively.The activation energy is-2.33 k J/mol.展开更多
The effect of Ru on γ' precipitation behavior and evolution in single crystal superalloys with different Ru contents were investigated by scanning electron microscopy with energy dispersive spectroscopy,3D atomic pr...The effect of Ru on γ' precipitation behavior and evolution in single crystal superalloys with different Ru contents were investigated by scanning electron microscopy with energy dispersive spectroscopy,3D atomic probing,differential scanning calorimetry.The results show that the solvus of the γ' phase decreases gradually with increasing Ru content in the alloys by casting or by the same solution and aging treatments,the alloy with a larger Ru content yields a smaller γ' phase.The addition of Ru increases the growth rate and coarsening rate of the γ' phase.Ru mainly distributes in the γ phase,which causes more Re and Mo partition into the γ' phase,increasing the absolute value of mismatch and the rafting rate of the γ' phase.展开更多
Ruthenium (Ru)‐based catalysts are widely employed in several types of gas‐solid reactions because of their high catalytic activities. This review provides theoretical research on Ru‐based catalysts and an analys...Ruthenium (Ru)‐based catalysts are widely employed in several types of gas‐solid reactions because of their high catalytic activities. This review provides theoretical research on Ru‐based catalysts and an analysis of their basic properties and oxidation behavior. There is particular emphasis on Ru‐catalyzed gas‐solid catalytic reactions, including the catalytic oxidation of VOCs, preferential oxidation of CO, synthesis of ammonia, oxidation of HCl and partial oxidation of CH4. Recent litera‐ture on catalysis is summarized and compared. Finally, we describe current challenges in the field and propose approaches for future development of Ru‐based catalysts.展开更多
Theoretical studies on the electronic and geometric structures, the trend in DNA-binding affinities as well as the the structure-activity relationship (SAR) of a series of water-soluble Ru(II) methylimidazole comp...Theoretical studies on the electronic and geometric structures, the trend in DNA-binding affinities as well as the the structure-activity relationship (SAR) of a series of water-soluble Ru(II) methylimidazole complexes, i.e. [Ru(Mehn)4iip]^2+ (1) (MeIm=l-methylimidazole, iip=2-(1H-imidazo-4-group)-lH-imidazo[n,5-f][1,10]phenanthroline), [Ru(MeIm)4tip]^2+ (2) (tip=2-(thiophene-2-group)-lH-imidazo[4,5-f] [i,10]phenanthroline), and [Ru(Melm)42ntz]^2+ (3) (2ntz=2-(2-nitro-l,3-thiazole-5-group)-lH-imidazo[4,5-f][1,10]phenanthroline), were car- ried out using the density functional theory (DFT). The electronic structures of these Ru(II) complexes were analyzed on the basis of their geometric structures optimized in aqueous solution, and the trend in the DNA-binding constants (Kb) was reasonably explained. The results show that the replacement of imidazole ligand by thiophene ligand can effectively improve the DNA-binding affinity of the complex. Meanwhile, it was found that introduc- ing the stronger electronegative N atom and NO2 group on terminal loop of intercalative ligand can obviously reduce the complex's LUMO and HOMO-LUMO gap energies. Based on these findings, the designed complex [Ru(MeIm)42ntz]^2+ (3) can be expected to have the greatest Kb value in complexes 1-3. In addition, the structure-activity relationships and antitumor mechanism were also carefully discussed, and the antimetastatic activity of the designed complex 3 was predicted. Finally, the electronic absorption spectra of this series of complexes in aqueous solution were calculated, simulated and assigned using DFT/TDDFT methods as well as conductor-like polarizable continuum model (CPCM), and were in good agreement with the experimental results.展开更多
A novel ammonia-synthesis catalyst. potassium-promoted ruthenium supported on fullerene (K-Ru/C60/70 ). was prepared and evaluated, It was found that K-Ru/C60/70 was the most active catalyst for ammonia synthesis at a...A novel ammonia-synthesis catalyst. potassium-promoted ruthenium supported on fullerene (K-Ru/C60/70 ). was prepared and evaluated, It was found that K-Ru/C60/70 was the most active catalyst for ammonia synthesis at atmospheric pressure and 623 K compared with other support materials such as silica, activated carbon. zeolite, λ-Al2O3 and rare earth metal oxide.展开更多
MnFe1.4Ru0.45Cu0.15O4 was an effective heterogeneous catalyst for the oxidation of various types of alcohols to the corresponding carbonyl compounds using atmospheric pressure of oxygen under mild conditions. Further...MnFe1.4Ru0.45Cu0.15O4 was an effective heterogeneous catalyst for the oxidation of various types of alcohols to the corresponding carbonyl compounds using atmospheric pressure of oxygen under mild conditions. Furthermore, this catalyst was also effective towards alcohol oxidation using water as solvent instead of toluene.展开更多
Various biologically important perimidine derivatives have been synthesized efficiently from various ketones and naphthalene- 1,8-diamine by using a catalytic amount of RuCl_3(1 mol%).This method is a very simple and ...Various biologically important perimidine derivatives have been synthesized efficiently from various ketones and naphthalene- 1,8-diamine by using a catalytic amount of RuCl_3(1 mol%).This method is a very simple and high yielding reaction for the synthesis of perimidine derivatives.展开更多
Ten kinds of activated carbon from different raw materials were used as supports to prepare ruthenium catalysts. N_2 physisorption and CO chemisorption were carried out to investigate the pore size distribution and th...Ten kinds of activated carbon from different raw materials were used as supports to prepare ruthenium catalysts. N_2 physisorption and CO chemisorption were carried out to investigate the pore size distribution and the ruthenium dispersion of the catalysts. It was found that the Ru dispersion of the catalyst was closely related to not only the texture of carbon support but also the purity of activated carbon. The activities of a series of the carbon-supported barium-promoted Ru catalysts for ammonia synthesis were measured at 425 ℃, 10 0 MPa and 10 000 h -1. The result shows that the same raw material activated carbon, with a high purity, high surface area, large pore volume and reasonable pore size distribution might disperse ruthenium and promoter sufficiently, which activated carbon as support, could be used to manufacture ruthenium catalyst with a high activity for ammonia synthesis. The different raw material activated carbon as the support would greatly influence the catalytic properties of the ruthenium catalyst for ammonia synthesis. For example, with coconut shell carbon(AC1) as the support, the ammonia concentration in the effluent was 13 17% over 4%Ru-BaO/AC1 catalyst, while with the desulfurized coal carbon(AC10) as the support, that in the effluent was only 1 37% over 4%Ru-BaO/AC10 catalyst.展开更多
Ruthenium oxide,which fabricated by radio frequency sputtering is used as the sensitive membrane,which shows that the pH sensitivity is very high and has a linear response in different buffer solutions.The pH electrod...Ruthenium oxide,which fabricated by radio frequency sputtering is used as the sensitive membrane,which shows that the pH sensitivity is very high and has a linear response in different buffer solutions.The pH electrode,which applies the structure of separative structure EGFET (Extended Gate Field Effect Transistor) insteads of the conventional gate ISFET (Ion Sensitive Field Effect Transistor) for reducing the cost of the fabrication and measurement.Unfortunately,the performance of the pH sensor was falsified by the drift and hysteresis.In addition,the total response is composed of the intrinsic response and drift,and the hysteresis effect combines the slow response with drift.Consequently,we would also investigate the drift in the buffer solutions and hysteresis effect in the different paths.In this way,the more accurate sensing properties are obtained by the RuO_x pH electrode.展开更多
Thin layers of an electrostatically associated adduct RuPVP-AuNP:POM formed between the polyoxomolybdate, [S2 Mo18 O62 ]4, the polycationic metallopolymer [Ru(bpy)2(PVP)10 ](ClO4)2 and DMAP-protected gold nanoparticle...Thin layers of an electrostatically associated adduct RuPVP-AuNP:POM formed between the polyoxomolybdate, [S2 Mo18 O62 ]4, the polycationic metallopolymer [Ru(bpy)2(PVP)10 ](ClO4)2 and DMAP-protected gold nanoparticle have been deposited onto electrodes using two separate methods, alternate immersion layer-by-layer assembly and pre-assembled drop-casting; PVP is poly(4-vinylpyridine), BPY is 2,2'-bipyridyl, and DMAP is 4-dimethylaminopyridine. Significantly, the efficiency of the photocatalysis depends markedly on the structure of the [RuPVP-AuNP:POM] even when photonic properties are very similar. Strikingly, despite their similar photonic properties, an additional optical transition is observed in UV-vis and the Raman spectra of pre-assembled drop cast [RuPVP-AuNP:POM], which was not seen in dip coated [RuPVP-AuNP:POM]. Importantly, this electronic communication enhances the photocatalytic oxidation of benzaldehyde by a factor of more than four. While there is clear evidence for photosensitisation in the drop cast not present for the dip coated systems, the magnitude of the photocurrent, i.e.,(82.2 6.6) nA·cm 2for pre-assembled drop cast [RuPVP-AuNP:POM] at a ruthenium to Au nanoparticle mole ratio of 48:1, is twice as large as that those found in [Ru-PVP:POM] film.展开更多
Hydrocarbon production rates and distributions on ruthenium promoted alumina supported cobalt Fischer-Tropsch synthesis (FTS) catalyst were studied by the concept of two superimposed Anderson-Schulz-Flory (ASF) di...Hydrocarbon production rates and distributions on ruthenium promoted alumina supported cobalt Fischer-Tropsch synthesis (FTS) catalyst were studied by the concept of two superimposed Anderson-Schulz-Flory (ASF) distributions.The results indicated that the characterizing growth probabilities α1 and α2 were strongly dependent on reaction conditions.By increasing the H2 /CO partial pressure ratios and reaction temperatures,deviation from normal ASF distribution decreases and the double-α-ASF distribution changes into a straight line.Based on the concept of double-α-ASF distribution,a useful rate equation for the production of hydrocarbons under industrial reaction conditions is obtained.展开更多
Carbon nanotubes(CNTs) with abundant surface defects are prepared by a liquid oxidation and thermal annealing method. The defective CNTs-D supported Ba–Ru/CNTs-D catalysts exhibit superior catalytic performance in am...Carbon nanotubes(CNTs) with abundant surface defects are prepared by a liquid oxidation and thermal annealing method. The defective CNTs-D supported Ba–Ru/CNTs-D catalysts exhibit superior catalytic performance in ammonia synthesis with a TOF be increased up to 0.30 s-1, which is 2.5 times of oxidized CNTs-O supported Ba–Ru/CNTs-O catalysts and 5 times of the Ba–Ru/CNTs. The characterizations by CO chemisorption, transmission electron microscope, Raman, and X-ray photoelectron spectroscopy revealed that the uniformly well dispersed Ru NPs can be stabilized on the defective sites of CNTs-D. The great improvement of the catalytic performance and stability of the Ba–Ru/CNTs-D is contributed to the strong interaction between Ru NPs and surface defect of the CNTs.展开更多
Hydrous ruthenium oxide was formed by a new process. The precursor was obtained by mixing the aqueous solutions of RuCl3xH2O and NaHCO3. The addition of NaHCO3 led to the formation of an oxide with extremely fine RuO2...Hydrous ruthenium oxide was formed by a new process. The precursor was obtained by mixing the aqueous solutions of RuCl3xH2O and NaHCO3. The addition of NaHCO3 led to the formation of an oxide with extremely fine RuO2 particles forming a porous network structure in the oxide electrode. Polyethylene glycol was added as a controller to partly inhibit the sol-gel reaction. The rate capacitance of 530 F·g^-1 was measured for the powder formed at an optimal annealing temperature of 210℃. Several details concerning this new material, including crystal structure, particle size as a function of temperature, and electrochemical properties, were also reported. In addition, the rate capacitance of the composite electrode reached 800 F·g^-1 after carbon black was added. By using the modified electrode of a RuO2/carbon black composite electrode, the electrochemical capacitor exhibits high energy density and stable power characteristics. The values of specific energy and maximum specific power of 24 Wh·kg^-1 and 4 kW·kg^-1, respectively, are demonstrated for a cell voltage between 0 and 1 V.展开更多
A novel efficient catalyst for the hydrogenation of carbon dioxide to formic acid ruthenium bisphosphine on functionalized silica was in situ synthesized, affording turnover frequency (TOF) of 1190 h^-1 at 100% sele...A novel efficient catalyst for the hydrogenation of carbon dioxide to formic acid ruthenium bisphosphine on functionalized silica was in situ synthesized, affording turnover frequency (TOF) of 1190 h^-1 at 100% selectivity under 80℃ with total pressure of 16.0 MPa. The catalyst can be separated from the reaction mixture easily and reused with moderate loss of activity.展开更多
A series of ruthenium azopyridine complexes have recently been investigated due to their potential cytotoxic activities against renal cancer (A498), lung cancer (H226), ovarian cancer (IGROV), breast cancer (MCF-7) an...A series of ruthenium azopyridine complexes have recently been investigated due to their potential cytotoxic activities against renal cancer (A498), lung cancer (H226), ovarian cancer (IGROV), breast cancer (MCF-7) and colon cancer (WIDR). Thus, in order to predict the cytotoxic potentials of these compounds, quantitative structure-activity relationship studies were carried out using the methods of quantum chemistry. Five Quantitative Structure Activity Relationship (QSAR) models were obtained from the determined quantum descriptors and the different activities. The models present the following statistical indicators: regression correlation coefficient R2 = 0.986 - 0.905, standard deviation S = 0.516 - 0.153, Fischer test F = 106.718 - 14.220, correlation coefficient of cross-validation = 0.985- 0.895 and = 0.010 - 0.001. The statistical characteristics of the established QSAR models satisfy the acceptance and external validation criteria, thereby accrediting their good performance. The models developed show that the variation of the free enthalpy of reaction , the dipole moment μ and the charge of the ligand in the complex Ql, are the explanatory and predictive quantum descriptors correlated with the values of the anti-cancer activity of the studied complexes. Moreover, the charge of the ligand is the priority descriptor for the prediction of the cytotoxicity of the compounds studied. Furthermore, QSAR models developed are statistically significant and predictive, and could be used for the design and synthesis of new anti-cancer molecules.展开更多
The effect of chloride ions on a monoclinic ZrO2-supported RuOx (RuOx/m-ZrO2) catalyst with a Ru surface density of 0.3 Ru/nm2 was studied in the selective oxidation of methanol to methyl formate (MF) at a low tem...The effect of chloride ions on a monoclinic ZrO2-supported RuOx (RuOx/m-ZrO2) catalyst with a Ru surface density of 0.3 Ru/nm2 was studied in the selective oxidation of methanol to methyl formate (MF) at a low temperature of 373 K. The m-ZrO2 support was Cl-free, and Cl- ions were introduced into the RuOx/m-ZrO2 catalyst by impregnation with zirconium oxychloride or ammonium chloride and subsequent thermal treatment in air at 673 K. The structures of these catalysts were characterized by X-ray diffraction, Raman and X-ray photoelectron spectroscopies. Their reducibility was probed by temperature-programmed reduction in H2. The RuOx domains were present as highly dispersed Rut42- structure on m-ZrO2 with similar reducibility for the RuOx/m-ZrO2 samples irrespective of modification with or without Cl ions. Introduction of appropriate amounts of zirconium oxychloride into RuOx/m-ZrO2 led to a remarkable increase in the methanol oxidation rate and MF selectivity, whereas introduction of ammonium chloride or zirconyl nitrate significantly inhibited the catalytic performance of RuOx/m-ZrO2. The promoting effect of Cl- ions derived from zirconium oxychloride can be tentatively attributed to their roles in facilitating the adsorption of methanol and desorption of MF product or its intermediates. This finding provides novel insights into the promoting effect of Cl- ions on oxides-based catalysts for selective oxidation reactions.展开更多
Stable and well-dispersed poly(N-vinyl-2-pyrrolidone) (PVP)-stabilized ruthenium colloidal clusters wereprepaxed via the reduction of ruthenium(III) chloride by refluxing with low boiling point alcohols. Investigation...Stable and well-dispersed poly(N-vinyl-2-pyrrolidone) (PVP)-stabilized ruthenium colloidal clusters wereprepaxed via the reduction of ruthenium(III) chloride by refluxing with low boiling point alcohols. Investigation of the size ofRu colloids by transmission electron microscopy (TEM) indicated that the average diametes could be controlled in the rangeof 1.2-1.6 nm with relative standard deviations of less than 0.33 by changing the molar ratio of PVP to Ru. The X-rayphotoelectron spectroscopy (XPS) characterization verified the formation of elemental ruthenium colloids.展开更多
文摘Electro-copolymerized film containing ruthenium complexes as electron-transfer(or redox)mediators and water-oxidation catalysts by an oxidative copolymerization method is presented.The addition of the redox mediator significantly improved the electrocatalytic water-oxidation activity and reduced the overpotential to 220 mV.The prepared electrode showed a water-oxidation catalytic rate constant kobs of 31.7 s^(-1)and an initial turnover frequency of 1.01 s^(-1)in 1000 s by potential electrolysis at 1.7 V applied bias vs NHE(normal hydrogen electrode).The kinetic isotope effect study suggests that the catalytic water oxidation reaction on the electrode surface occurs via a bimolecular coupling mechanism.
文摘CO_(2) methanation has a potential in the large-scale utilization of carbon dioxide.It has also been considered to be useful for the renewable energy storage.The commercial pipeline for natural gas transportation can be directly applied for the methane product of CO_(2) methanation.The supported ruthenium(Ru)catalyst has been confirmed to be active and stable for CO_(2) methanation with its high ability in the dissociation of hydrogen and the strong binding of carbon monoxide.CO_(2) methanation over the supported Ru catalyst is structure sensitive.The size of the Ru catalyst and the support have significant effects on the activity and the mechanism.A significant challenge re-mained is the structural controllable preparation of the supported Ru catalyst toward a sufficiently high low-temperature activity.In this review,the recent progresses in the investigations of the supported Ru catalysts for CO_(2) methanation are summarized.The challenges and the future devel-opments are also discussed.
基金Project(22178392)supported by the National Natural Science Foundation of China。
文摘Preparation of high purity ruthenium nitrosyl nitrate using spent Ru-Zn/ZrO_(2)catalyst was studied,including melting and leaching to obtain potassium ruthenate solution,reduction,dissolving,concentrating and drying to obtain ruthenium trichloride,nitrosation and hydrolysis to obtain ruthenium nitrosyl hydroxide,removing of K^(+)and Cl^(-),and neutralization with nitric acid.The effects of temperature,concentration,time and pH on the yield and purity of intermediates and final product were studied,and the optimum process conditions were obtained.The yield of ruthenium nitrosyl nitrate is 92%,the content of ruthenium in high purity product is 32.16%,and the content of Cl^(-)and K^(+)are much less than 0.005%.The reaction kinetics of ruthenium nitrosyl chloride to ruthenium nitrosyl hydroxide was studied.The reaction orders of Ru(NO)Cl_(3)at 40,55 and 70℃are 0.39,0.37 and 0.39,respectively,while those of KOH are 0.16,0.15 and 0.17,respectively.The activation energy is-2.33 k J/mol.
基金Project(U1037601) supported by the National Natural Science Foundation of China
文摘The effect of Ru on γ' precipitation behavior and evolution in single crystal superalloys with different Ru contents were investigated by scanning electron microscopy with energy dispersive spectroscopy,3D atomic probing,differential scanning calorimetry.The results show that the solvus of the γ' phase decreases gradually with increasing Ru content in the alloys by casting or by the same solution and aging treatments,the alloy with a larger Ru content yields a smaller γ' phase.The addition of Ru increases the growth rate and coarsening rate of the γ' phase.Ru mainly distributes in the γ phase,which causes more Re and Mo partition into the γ' phase,increasing the absolute value of mismatch and the rafting rate of the γ' phase.
基金supported by Beijing Natural Science Foundation (8164063)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB05050100)~~
文摘Ruthenium (Ru)‐based catalysts are widely employed in several types of gas‐solid reactions because of their high catalytic activities. This review provides theoretical research on Ru‐based catalysts and an analysis of their basic properties and oxidation behavior. There is particular emphasis on Ru‐catalyzed gas‐solid catalytic reactions, including the catalytic oxidation of VOCs, preferential oxidation of CO, synthesis of ammonia, oxidation of HCl and partial oxidation of CH4. Recent litera‐ture on catalysis is summarized and compared. Finally, we describe current challenges in the field and propose approaches for future development of Ru‐based catalysts.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20903027), the Natural Science Foundation of Guangdong Province of China (No.9452402301001941), the Medical Scientific Research Foundation of Guangdong Province of China (No.B2013297), and the University Student in Guangdong Province Innovation and Entrepreneurship Train ing Program (No.1057112019 and No.1057112013).
文摘Theoretical studies on the electronic and geometric structures, the trend in DNA-binding affinities as well as the the structure-activity relationship (SAR) of a series of water-soluble Ru(II) methylimidazole complexes, i.e. [Ru(Mehn)4iip]^2+ (1) (MeIm=l-methylimidazole, iip=2-(1H-imidazo-4-group)-lH-imidazo[n,5-f][1,10]phenanthroline), [Ru(MeIm)4tip]^2+ (2) (tip=2-(thiophene-2-group)-lH-imidazo[4,5-f] [i,10]phenanthroline), and [Ru(Melm)42ntz]^2+ (3) (2ntz=2-(2-nitro-l,3-thiazole-5-group)-lH-imidazo[4,5-f][1,10]phenanthroline), were car- ried out using the density functional theory (DFT). The electronic structures of these Ru(II) complexes were analyzed on the basis of their geometric structures optimized in aqueous solution, and the trend in the DNA-binding constants (Kb) was reasonably explained. The results show that the replacement of imidazole ligand by thiophene ligand can effectively improve the DNA-binding affinity of the complex. Meanwhile, it was found that introduc- ing the stronger electronegative N atom and NO2 group on terminal loop of intercalative ligand can obviously reduce the complex's LUMO and HOMO-LUMO gap energies. Based on these findings, the designed complex [Ru(MeIm)42ntz]^2+ (3) can be expected to have the greatest Kb value in complexes 1-3. In addition, the structure-activity relationships and antitumor mechanism were also carefully discussed, and the antimetastatic activity of the designed complex 3 was predicted. Finally, the electronic absorption spectra of this series of complexes in aqueous solution were calculated, simulated and assigned using DFT/TDDFT methods as well as conductor-like polarizable continuum model (CPCM), and were in good agreement with the experimental results.
文摘A novel ammonia-synthesis catalyst. potassium-promoted ruthenium supported on fullerene (K-Ru/C60/70 ). was prepared and evaluated, It was found that K-Ru/C60/70 was the most active catalyst for ammonia synthesis at atmospheric pressure and 623 K compared with other support materials such as silica, activated carbon. zeolite, λ-Al2O3 and rare earth metal oxide.
文摘MnFe1.4Ru0.45Cu0.15O4 was an effective heterogeneous catalyst for the oxidation of various types of alcohols to the corresponding carbonyl compounds using atmospheric pressure of oxygen under mild conditions. Furthermore, this catalyst was also effective towards alcohol oxidation using water as solvent instead of toluene.
文摘Various biologically important perimidine derivatives have been synthesized efficiently from various ketones and naphthalene- 1,8-diamine by using a catalytic amount of RuCl_3(1 mol%).This method is a very simple and high yielding reaction for the synthesis of perimidine derivatives.
基金Supported by the Science &Technical Ministry of China( No.2 0 0 1BA3 2 2 C) ,the Science &Technical Department ofFujian Province( No.2 0 0 0 F0 0 2 ) and the Science &Technical Development Foundation of Fuzhou U niversity( No.XKJQD-0 10 2 )
文摘Ten kinds of activated carbon from different raw materials were used as supports to prepare ruthenium catalysts. N_2 physisorption and CO chemisorption were carried out to investigate the pore size distribution and the ruthenium dispersion of the catalysts. It was found that the Ru dispersion of the catalyst was closely related to not only the texture of carbon support but also the purity of activated carbon. The activities of a series of the carbon-supported barium-promoted Ru catalysts for ammonia synthesis were measured at 425 ℃, 10 0 MPa and 10 000 h -1. The result shows that the same raw material activated carbon, with a high purity, high surface area, large pore volume and reasonable pore size distribution might disperse ruthenium and promoter sufficiently, which activated carbon as support, could be used to manufacture ruthenium catalyst with a high activity for ammonia synthesis. The different raw material activated carbon as the support would greatly influence the catalytic properties of the ruthenium catalyst for ammonia synthesis. For example, with coconut shell carbon(AC1) as the support, the ammonia concentration in the effluent was 13 17% over 4%Ru-BaO/AC1 catalyst, while with the desulfurized coal carbon(AC10) as the support, that in the effluent was only 1 37% over 4%Ru-BaO/AC10 catalyst.
文摘Ruthenium oxide,which fabricated by radio frequency sputtering is used as the sensitive membrane,which shows that the pH sensitivity is very high and has a linear response in different buffer solutions.The pH electrode,which applies the structure of separative structure EGFET (Extended Gate Field Effect Transistor) insteads of the conventional gate ISFET (Ion Sensitive Field Effect Transistor) for reducing the cost of the fabrication and measurement.Unfortunately,the performance of the pH sensor was falsified by the drift and hysteresis.In addition,the total response is composed of the intrinsic response and drift,and the hysteresis effect combines the slow response with drift.Consequently,we would also investigate the drift in the buffer solutions and hysteresis effect in the different paths.In this way,the more accurate sensing properties are obtained by the RuO_x pH electrode.
基金Projects(07/RFP/MASF386,201109019) supported by the Science Foundation Ireland and Ministry of Environmental Protection under the Research Frontiers Program,Ireland
文摘Thin layers of an electrostatically associated adduct RuPVP-AuNP:POM formed between the polyoxomolybdate, [S2 Mo18 O62 ]4, the polycationic metallopolymer [Ru(bpy)2(PVP)10 ](ClO4)2 and DMAP-protected gold nanoparticle have been deposited onto electrodes using two separate methods, alternate immersion layer-by-layer assembly and pre-assembled drop-casting; PVP is poly(4-vinylpyridine), BPY is 2,2'-bipyridyl, and DMAP is 4-dimethylaminopyridine. Significantly, the efficiency of the photocatalysis depends markedly on the structure of the [RuPVP-AuNP:POM] even when photonic properties are very similar. Strikingly, despite their similar photonic properties, an additional optical transition is observed in UV-vis and the Raman spectra of pre-assembled drop cast [RuPVP-AuNP:POM], which was not seen in dip coated [RuPVP-AuNP:POM]. Importantly, this electronic communication enhances the photocatalytic oxidation of benzaldehyde by a factor of more than four. While there is clear evidence for photosensitisation in the drop cast not present for the dip coated systems, the magnitude of the photocurrent, i.e.,(82.2 6.6) nA·cm 2for pre-assembled drop cast [RuPVP-AuNP:POM] at a ruthenium to Au nanoparticle mole ratio of 48:1, is twice as large as that those found in [Ru-PVP:POM] film.
文摘Hydrocarbon production rates and distributions on ruthenium promoted alumina supported cobalt Fischer-Tropsch synthesis (FTS) catalyst were studied by the concept of two superimposed Anderson-Schulz-Flory (ASF) distributions.The results indicated that the characterizing growth probabilities α1 and α2 were strongly dependent on reaction conditions.By increasing the H2 /CO partial pressure ratios and reaction temperatures,deviation from normal ASF distribution decreases and the double-α-ASF distribution changes into a straight line.Based on the concept of double-α-ASF distribution,a useful rate equation for the production of hydrocarbons under industrial reaction conditions is obtained.
基金The financial support from Natural Science Foundation of Zhejiang Province(LY17B030010)。
文摘Carbon nanotubes(CNTs) with abundant surface defects are prepared by a liquid oxidation and thermal annealing method. The defective CNTs-D supported Ba–Ru/CNTs-D catalysts exhibit superior catalytic performance in ammonia synthesis with a TOF be increased up to 0.30 s-1, which is 2.5 times of oxidized CNTs-O supported Ba–Ru/CNTs-O catalysts and 5 times of the Ba–Ru/CNTs. The characterizations by CO chemisorption, transmission electron microscope, Raman, and X-ray photoelectron spectroscopy revealed that the uniformly well dispersed Ru NPs can be stabilized on the defective sites of CNTs-D. The great improvement of the catalytic performance and stability of the Ba–Ru/CNTs-D is contributed to the strong interaction between Ru NPs and surface defect of the CNTs.
文摘Hydrous ruthenium oxide was formed by a new process. The precursor was obtained by mixing the aqueous solutions of RuCl3xH2O and NaHCO3. The addition of NaHCO3 led to the formation of an oxide with extremely fine RuO2 particles forming a porous network structure in the oxide electrode. Polyethylene glycol was added as a controller to partly inhibit the sol-gel reaction. The rate capacitance of 530 F·g^-1 was measured for the powder formed at an optimal annealing temperature of 210℃. Several details concerning this new material, including crystal structure, particle size as a function of temperature, and electrochemical properties, were also reported. In addition, the rate capacitance of the composite electrode reached 800 F·g^-1 after carbon black was added. By using the modified electrode of a RuO2/carbon black composite electrode, the electrochemical capacitor exhibits high energy density and stable power characteristics. The values of specific energy and maximum specific power of 24 Wh·kg^-1 and 4 kW·kg^-1, respectively, are demonstrated for a cell voltage between 0 and 1 V.
基金the National Natural Science Foundation of China (No.20173048) the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20030335068)+1 种基金 the Scientific Research Fund of Zhcjiang Provincial Education Department (No. 20040320) Zhcjiang Provincial Natural Science Foundation of China (No. Y405088).
文摘A novel efficient catalyst for the hydrogenation of carbon dioxide to formic acid ruthenium bisphosphine on functionalized silica was in situ synthesized, affording turnover frequency (TOF) of 1190 h^-1 at 100% selectivity under 80℃ with total pressure of 16.0 MPa. The catalyst can be separated from the reaction mixture easily and reused with moderate loss of activity.
文摘A series of ruthenium azopyridine complexes have recently been investigated due to their potential cytotoxic activities against renal cancer (A498), lung cancer (H226), ovarian cancer (IGROV), breast cancer (MCF-7) and colon cancer (WIDR). Thus, in order to predict the cytotoxic potentials of these compounds, quantitative structure-activity relationship studies were carried out using the methods of quantum chemistry. Five Quantitative Structure Activity Relationship (QSAR) models were obtained from the determined quantum descriptors and the different activities. The models present the following statistical indicators: regression correlation coefficient R2 = 0.986 - 0.905, standard deviation S = 0.516 - 0.153, Fischer test F = 106.718 - 14.220, correlation coefficient of cross-validation = 0.985- 0.895 and = 0.010 - 0.001. The statistical characteristics of the established QSAR models satisfy the acceptance and external validation criteria, thereby accrediting their good performance. The models developed show that the variation of the free enthalpy of reaction , the dipole moment μ and the charge of the ligand in the complex Ql, are the explanatory and predictive quantum descriptors correlated with the values of the anti-cancer activity of the studied complexes. Moreover, the charge of the ligand is the priority descriptor for the prediction of the cytotoxicity of the compounds studied. Furthermore, QSAR models developed are statistically significant and predictive, and could be used for the design and synthesis of new anti-cancer molecules.
基金supported by the National Natural Science Foundation of China(20825310 and 20973011)National Basic Research Project of China (2011CB201400 and 2011CB808700)
文摘The effect of chloride ions on a monoclinic ZrO2-supported RuOx (RuOx/m-ZrO2) catalyst with a Ru surface density of 0.3 Ru/nm2 was studied in the selective oxidation of methanol to methyl formate (MF) at a low temperature of 373 K. The m-ZrO2 support was Cl-free, and Cl- ions were introduced into the RuOx/m-ZrO2 catalyst by impregnation with zirconium oxychloride or ammonium chloride and subsequent thermal treatment in air at 673 K. The structures of these catalysts were characterized by X-ray diffraction, Raman and X-ray photoelectron spectroscopies. Their reducibility was probed by temperature-programmed reduction in H2. The RuOx domains were present as highly dispersed Rut42- structure on m-ZrO2 with similar reducibility for the RuOx/m-ZrO2 samples irrespective of modification with or without Cl ions. Introduction of appropriate amounts of zirconium oxychloride into RuOx/m-ZrO2 led to a remarkable increase in the methanol oxidation rate and MF selectivity, whereas introduction of ammonium chloride or zirconyl nitrate significantly inhibited the catalytic performance of RuOx/m-ZrO2. The promoting effect of Cl- ions derived from zirconium oxychloride can be tentatively attributed to their roles in facilitating the adsorption of methanol and desorption of MF product or its intermediates. This finding provides novel insights into the promoting effect of Cl- ions on oxides-based catalysts for selective oxidation reactions.
基金This work was supported by the National Natural Science Foundation of China (No. 29873058).
文摘Stable and well-dispersed poly(N-vinyl-2-pyrrolidone) (PVP)-stabilized ruthenium colloidal clusters wereprepaxed via the reduction of ruthenium(III) chloride by refluxing with low boiling point alcohols. Investigation of the size ofRu colloids by transmission electron microscopy (TEM) indicated that the average diametes could be controlled in the rangeof 1.2-1.6 nm with relative standard deviations of less than 0.33 by changing the molar ratio of PVP to Ru. The X-rayphotoelectron spectroscopy (XPS) characterization verified the formation of elemental ruthenium colloids.