Optical emission spectroscopy is used to investigate the nitrogen-hydrogen with trace rare gas (4% Ar) plasma generated by 50 Hz pulsed DC discharges. The filling pressure varies from 1 mbar to 5 mbar and the curren...Optical emission spectroscopy is used to investigate the nitrogen-hydrogen with trace rare gas (4% Ar) plasma generated by 50 Hz pulsed DC discharges. The filling pressure varies from 1 mbar to 5 mbar and the current density ranges from 1 mA-cm-2 to 4 mA.cm-2. The hydrogen concentration in the mixture plasma varies from 0% to 80%, with the objective of identifying the optimum pressure, current density and hydrogen concentration for active species ([N] and IN2]) generation. It is observed that in an N2-H2 gas mixture, the concentration of N atom density decreases with filling pressure and increases with current density, with other parameters of the discharge kept unchanged. The maximum concentrations of active species were found for 40% H2 in the mixture at 3 mbar pressure and current density of 4 mA.cm-2.展开更多
基金supported by QAU URF,Pakistan Science Foundation(PSF)Project No.PSF/RES/Phys(152),HEC project 20-2002(R&D) and HEC project for Gomal University Plasma Physics Laboratorythe financial support of HEC for their doctoral studies under the indigenous fellowship scheme
文摘Optical emission spectroscopy is used to investigate the nitrogen-hydrogen with trace rare gas (4% Ar) plasma generated by 50 Hz pulsed DC discharges. The filling pressure varies from 1 mbar to 5 mbar and the current density ranges from 1 mA-cm-2 to 4 mA.cm-2. The hydrogen concentration in the mixture plasma varies from 0% to 80%, with the objective of identifying the optimum pressure, current density and hydrogen concentration for active species ([N] and IN2]) generation. It is observed that in an N2-H2 gas mixture, the concentration of N atom density decreases with filling pressure and increases with current density, with other parameters of the discharge kept unchanged. The maximum concentrations of active species were found for 40% H2 in the mixture at 3 mbar pressure and current density of 4 mA.cm-2.