Degradation of 2, 4, 6 trichlorophenol(TCP) with co immobilizing anaerobic granular sludge and isolated aerobic bacterial species was studied in coupled anaerobic/aerobic integrated reactors. The synergism of aerobe...Degradation of 2, 4, 6 trichlorophenol(TCP) with co immobilizing anaerobic granular sludge and isolated aerobic bacterial species was studied in coupled anaerobic/aerobic integrated reactors. The synergism of aerobes and anaerobes within co immobilized granule might facilitate degrading the TCP and exchange of anaerobic metabolites 4 CP, which promoted system organic removal efficiency and recovered from organic shock loads more quickly. The biomass specific activities experiment further confirmed that strict anaerobes be not affected over the course of this experiment by the presence of an oxic environment, aerobic activity predominated in the outer co immobilized granule layers, while the interior was characterized by anaerobic activity. The co immobilized granule could thus enable both aerobic and anaerobic microbes function in the same reactor and thereby integrate the oxidative and reductive catabolism.展开更多
Adsorption of 2, 4, 6-trichlorophenol(TCP) onto the calcined Mg/Al-CO_3 layered double hydroxide(CLDH) was investigated. The prepared Mg/Al-CO_3 layered double hydroxide(LDH) and CLDH were characterized by powde...Adsorption of 2, 4, 6-trichlorophenol(TCP) onto the calcined Mg/Al-CO_3 layered double hydroxide(CLDH) was investigated. The prepared Mg/Al-CO_3 layered double hydroxide(LDH) and CLDH were characterized by powder X-ray diffraction(XRD) and thermo gravimetric analyzer-differential scanning calorimeters(TG-DSC). Moreover, 2,4,6-trichlorophenol(TCP) was removed effectively(94.7% of removal percentage in 9h) under the optimized experimental conditions. The adsorption kinetics data fitted the pseudosecond-order model well. The Freundlich, Langmuir, and Tempkin adsorption models were applied to the experimental equilibrium adsorption data at different temperatures of solution. The adsorption data fitted the Freundlieh adsorption isotherm with good values of the correlation coefficient. A mechanism of the adsorption process is proposed according to the intraparticle diffusion model, which indicates that the overall rate of adsorption can be described as three steps.展开更多
2,4,6-trichlorophenol (TCP) was firstly treated with air ions generated by electric discharge, and high dechlorination (53%) was observed after 60 min treatment, indicating that air ions are an efficient dechlorinatio...2,4,6-trichlorophenol (TCP) was firstly treated with air ions generated by electric discharge, and high dechlorination (53%) was observed after 60 min treatment, indicating that air ions are an efficient dechlorination means and might have a future in the oxidative removal of chlorinated phenols. In addition, a stepwise degradation of TCP, beginning with the formation of a major product 2,6-dichloro-1,4-benzenediol via substitution, is proposed through a detailed analysis of gas chromatography/mass spectrometry.展开更多
Znx</sub>Cd1-x</sub>S solid solutions with controlled morphology have been successfully synthe-sized by a facile solution-phase method. The prepared samples were characterized by X-ray powder diffraction (...Znx</sub>Cd1-x</sub>S solid solutions with controlled morphology have been successfully synthe-sized by a facile solution-phase method. The prepared samples were characterized by X-ray powder diffraction (XRD), UV-vis diffuse reflectance spectra, X-ray photoelec-tron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission elec-tron microscopy (TEM). The photocatalytic activity of Zn<sub>x</sub>Cd<sub>1-x</sub>S was evaluated in the 2,4,6-trichlorophenol (TCP) degradation and mineralization in aqueous solution under direct solar light illumination. The experiment demonstrated that TCP was effectively degraded by more than 95% with 120 min. The results show that ZnS with Cd doping (Znx</sub>Cd1-x</sub>S) exhibits the much stronger visible light adsorption than that of pure ZnS, the light adsorption increasing as the Cd<sup>2+</sup> doping amount. These results indicate that Cd doping into a ZnS crystal lattice can result in the shift of the valence band of ZnS to a positive direction. It may lead to its higher oxidative ability than pure ZnS, which is important for organic pollutant degradation under solar light irradiation. Further-more, the photocatalytic activity studies reveal that the prepared Znx</sub>Cd1-x</sub>S nanostructures exhibit an excellent photocatalytic performance, degrading rapidly the aqueous 2,4,6-trichlorophenol solution under solar light irradiation. These results sug-gest that Znx</sub>Cd1-x</sub>S nanostructure will be a promising candidate of photocatalyst working in solar light range.展开更多
文摘Degradation of 2, 4, 6 trichlorophenol(TCP) with co immobilizing anaerobic granular sludge and isolated aerobic bacterial species was studied in coupled anaerobic/aerobic integrated reactors. The synergism of aerobes and anaerobes within co immobilized granule might facilitate degrading the TCP and exchange of anaerobic metabolites 4 CP, which promoted system organic removal efficiency and recovered from organic shock loads more quickly. The biomass specific activities experiment further confirmed that strict anaerobes be not affected over the course of this experiment by the presence of an oxic environment, aerobic activity predominated in the outer co immobilized granule layers, while the interior was characterized by anaerobic activity. The co immobilized granule could thus enable both aerobic and anaerobic microbes function in the same reactor and thereby integrate the oxidative and reductive catabolism.
基金Funded by the National Natural Science Foundation of China(No.21476269)
文摘Adsorption of 2, 4, 6-trichlorophenol(TCP) onto the calcined Mg/Al-CO_3 layered double hydroxide(CLDH) was investigated. The prepared Mg/Al-CO_3 layered double hydroxide(LDH) and CLDH were characterized by powder X-ray diffraction(XRD) and thermo gravimetric analyzer-differential scanning calorimeters(TG-DSC). Moreover, 2,4,6-trichlorophenol(TCP) was removed effectively(94.7% of removal percentage in 9h) under the optimized experimental conditions. The adsorption kinetics data fitted the pseudosecond-order model well. The Freundlich, Langmuir, and Tempkin adsorption models were applied to the experimental equilibrium adsorption data at different temperatures of solution. The adsorption data fitted the Freundlieh adsorption isotherm with good values of the correlation coefficient. A mechanism of the adsorption process is proposed according to the intraparticle diffusion model, which indicates that the overall rate of adsorption can be described as three steps.
基金the Alexander von Humboldt Foundation of Germany, and partly by the CAS and the NNSF of China.
文摘2,4,6-trichlorophenol (TCP) was firstly treated with air ions generated by electric discharge, and high dechlorination (53%) was observed after 60 min treatment, indicating that air ions are an efficient dechlorination means and might have a future in the oxidative removal of chlorinated phenols. In addition, a stepwise degradation of TCP, beginning with the formation of a major product 2,6-dichloro-1,4-benzenediol via substitution, is proposed through a detailed analysis of gas chromatography/mass spectrometry.
文摘Znx</sub>Cd1-x</sub>S solid solutions with controlled morphology have been successfully synthe-sized by a facile solution-phase method. The prepared samples were characterized by X-ray powder diffraction (XRD), UV-vis diffuse reflectance spectra, X-ray photoelec-tron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission elec-tron microscopy (TEM). The photocatalytic activity of Zn<sub>x</sub>Cd<sub>1-x</sub>S was evaluated in the 2,4,6-trichlorophenol (TCP) degradation and mineralization in aqueous solution under direct solar light illumination. The experiment demonstrated that TCP was effectively degraded by more than 95% with 120 min. The results show that ZnS with Cd doping (Znx</sub>Cd1-x</sub>S) exhibits the much stronger visible light adsorption than that of pure ZnS, the light adsorption increasing as the Cd<sup>2+</sup> doping amount. These results indicate that Cd doping into a ZnS crystal lattice can result in the shift of the valence band of ZnS to a positive direction. It may lead to its higher oxidative ability than pure ZnS, which is important for organic pollutant degradation under solar light irradiation. Further-more, the photocatalytic activity studies reveal that the prepared Znx</sub>Cd1-x</sub>S nanostructures exhibit an excellent photocatalytic performance, degrading rapidly the aqueous 2,4,6-trichlorophenol solution under solar light irradiation. These results sug-gest that Znx</sub>Cd1-x</sub>S nanostructure will be a promising candidate of photocatalyst working in solar light range.