The activity concentration of natural and fallout radionuclides in the soil at some selected Thanas around the TRIGA Mark-II Research Reactor at Atomic Energy Research Establishment (AERE), Savar, Dhaka were measured ...The activity concentration of natural and fallout radionuclides in the soil at some selected Thanas around the TRIGA Mark-II Research Reactor at Atomic Energy Research Establishment (AERE), Savar, Dhaka were measured by using a high purity germanium detector (HPGe). The study revealed that only natural radionuclides were present in the samples and no trace of any artificial radionuclide was found. The average activity concentration of 238U, 232Th and 40K were found to be 37.8 ± 5.6 Bq.kg-1, 58.2 ± 11.0 Bq.kg-1 and 790.8 ± 153.4 Bq.kg-1 respectively. The radium equivalent activity (Req), absorbed dose rate (D), external radiation hazard index (Hex) and internal radiation hazard index (Hin) were also calculated to find out the probable radiological hazard of the natural radioactivity.展开更多
The present work gives a methodology for assessing radiological concentration of 131I, 132I, 133I, 134I, and 135I due to a hypothetical accident of TRIGA Mark-II research Reactor at AERE, Savar, Bangladesh. The concen...The present work gives a methodology for assessing radiological concentration of 131I, 132I, 133I, 134I, and 135I due to a hypothetical accident of TRIGA Mark-II research Reactor at AERE, Savar, Bangladesh. The concentrations were estimated through different pathways like ingestion of vegetation, milk, and meat from air and ground deposition. The maximum air concentrations for all 16 directions were found at 110 m distance from the core of the reactor and it was found to be highest in the southern (S) direction. The maximum ground concentration occurred immediately just after the accident in different directions. In all pathways, the most concentration was found to be in S-direction. The concentrations in vegetation of 131I, 133I, 135I were significant, while no concentrations of 132I and 134I were observed. The concentration in vegetation for 131I was found to be highest than all other isotopes of iodine. The concentrations of 133I were found to be higher and concentrations of 134I were observed to be lower in both milk and meat compared to other radio isotopes of iodine. In the case of a radiological accident, the results of the present study will be a valuable guide for adopting radiological safety measures for radiation protection against the ingestion of vegetables, milk and meat from around the research reactor at AERE, Savar, Bangladesh.展开更多
针对坐落于意大利帕维亚大学的TRIGA Mark Ⅱ反应堆热柱结构进行优化设计,从而满足面向硼中子俘获治疗(BNCT)的单光子发射计算机断层成像(SPECT)研究要求。为提高计算效率并减小统计误差,对比分析使用SSW/SSR方法与直接使用反应堆为源...针对坐落于意大利帕维亚大学的TRIGA Mark Ⅱ反应堆热柱结构进行优化设计,从而满足面向硼中子俘获治疗(BNCT)的单光子发射计算机断层成像(SPECT)研究要求。为提高计算效率并减小统计误差,对比分析使用SSW/SSR方法与直接使用反应堆为源项时热柱内照射位置处中子能谱,其结果基本一致,从而验证了SSW/SSR方法的可靠性。为在该反应堆开展BNCT中SPECT实验,热柱中子束需准直为笔形束。对比分析四种热柱优化方案下束流口处及探测器处热中子和光子通量:40cm长石墨(射束口5cm×3cm);0.5cm厚硼包裹40cm长石墨(射束口5cm×3cm);30cm长天然锂聚乙烯(射束口直径4cm);30cm长天然锂聚乙烯(20cm长射束口直径5cm,5cm长射束口直径4cm,5cm长射束口直径2cm)。结果显示,射束口处热中子通量分别为1.05×108,2.52×107,6.08×107和5.10×107#/(cm2·s)。综合考虑中子准直效果及光子污染,方案三具有最优性能。为后续进行BNCT-SPECT理论和实验研究提供了基础,从而有效促进BNCT剂量准确评估方法的研究进程。展开更多
The assessment of the radiological concentration of <sup>134</sup>Cs and <sup>137</sup>Cs owing to hypothetical accident of TRIGA Mark-II research Reactor at AERE, Savar, Bangladesh is presente...The assessment of the radiological concentration of <sup>134</sup>Cs and <sup>137</sup>Cs owing to hypothetical accident of TRIGA Mark-II research Reactor at AERE, Savar, Bangladesh is presented here in this work. The concentration of <sup>134</sup>Cs and <sup>137</sup>Cs was estimated in different pathways consisting of the ingestion of plants, milk, and meat. The highest air concentration has been determined at 65 m distance from the core of the reactor. The maximum concentration passed off without delay simply after the accident in various directions. Local meteorological information such as average wind velocity and wind frequency were analyzed. Considering all directions, the highest concentration has been observed in the “S” direction. The concentrations of <sup>134</sup>Cs and <sup>137</sup>Cs were determined in ground, vegetation, milk and meat. The concentration of <sup>137</sup>Cs is investigated to be higher than the <sup>134</sup>Cs. The concentration of <sup>134</sup>Cs and <sup>137</sup>Cs was found to be lower in vegetation, milk, and meat than that of ground concentration. Overall, in this study, the concentration in meat has been investigated to be lower. In case of a reactor accident, the concentration assessment due to the ingestion of vegetables, milk, and meat will be a valuable guide for insuring radiological protection across the research reactor at AERE, Savar, Bangladesh.展开更多
The COOLOD-N2 and PARET computer codes were used for a steady-state thermal hydraulic and safety analysis of the 3 MW TRIGA Mark-II research reactor located at Atomic Energy Research Establishment (AERE), Savar, Dhaka...The COOLOD-N2 and PARET computer codes were used for a steady-state thermal hydraulic and safety analysis of the 3 MW TRIGA Mark-II research reactor located at Atomic Energy Research Establishment (AERE), Savar, Dhaka, Bangladesh. The objective of the present study is to ensure that all important safety related thermal hydraulic parameters uphold margins far below the safety limits by steady-state calculations at full power. We, therefore, have calculated the hot channel fuel centreline temperature, fuel surface temperature, cladding surface temperature, the departure from nucleate boiling (DNB) heat flux and DNB ratio, axial fuel centreline temperature and compared. The comparison indicates that the calculated values are in satisfactory agreement between the codes. The data obtained in this investigation are largely far to compromise safety of the reactor. The results can also be used to upgrade the current core configuration of the TRIGA reactor.展开更多
In this paper, the evaluation of a preliminary design of a PGAA (prompt gamma activation analysis) facility based on Monte Carlo simulations is presented and discussed. The implementation of the PGAA method at the C...In this paper, the evaluation of a preliminary design of a PGAA (prompt gamma activation analysis) facility based on Monte Carlo simulations is presented and discussed. The implementation of the PGAA method at the CDTN (nuclear technology development centre) would increase the applications of the TRIGA reactor. The preliminary design is based on a quasi vertical hollow cylinder (called neutron extractor) in the reactor pool to extract the neutron flux. This study evaluates the neutron flux in the upper position of the cylinder in the suggested position of the samples to be analyzed by the PGAA. The calculations of the radioactive capture reaction rates and of the detection limits for some isotopes were performed. Through all these calculations, the feasibility of the application of the PGAA method at the IPR-R1 installations was evaluated. According to the obtained results, it can be concluded that is possible to apply the PGAA method at the IPR-R1 reactor, even with its design restrictions.展开更多
During the past five decades, the TRIGA reactor Vienna has reached a top place in utilization among low power research reactors. This paper discussed the highlights of the major neutron physics experiments in the fiel...During the past five decades, the TRIGA reactor Vienna has reached a top place in utilization among low power research reactors. This paper discussed the highlights of the major neutron physics experiments in the field of neutron interferometry and ultra-small angle neutron scattering as well as in the field of radiochemistry, education and training and research in the field of nuclear safeguards and nuclear security. Potential further directions of research are outlined where the Atominstitut of Vienna might concentrate in future.展开更多
文摘The activity concentration of natural and fallout radionuclides in the soil at some selected Thanas around the TRIGA Mark-II Research Reactor at Atomic Energy Research Establishment (AERE), Savar, Dhaka were measured by using a high purity germanium detector (HPGe). The study revealed that only natural radionuclides were present in the samples and no trace of any artificial radionuclide was found. The average activity concentration of 238U, 232Th and 40K were found to be 37.8 ± 5.6 Bq.kg-1, 58.2 ± 11.0 Bq.kg-1 and 790.8 ± 153.4 Bq.kg-1 respectively. The radium equivalent activity (Req), absorbed dose rate (D), external radiation hazard index (Hex) and internal radiation hazard index (Hin) were also calculated to find out the probable radiological hazard of the natural radioactivity.
文摘The present work gives a methodology for assessing radiological concentration of 131I, 132I, 133I, 134I, and 135I due to a hypothetical accident of TRIGA Mark-II research Reactor at AERE, Savar, Bangladesh. The concentrations were estimated through different pathways like ingestion of vegetation, milk, and meat from air and ground deposition. The maximum air concentrations for all 16 directions were found at 110 m distance from the core of the reactor and it was found to be highest in the southern (S) direction. The maximum ground concentration occurred immediately just after the accident in different directions. In all pathways, the most concentration was found to be in S-direction. The concentrations in vegetation of 131I, 133I, 135I were significant, while no concentrations of 132I and 134I were observed. The concentration in vegetation for 131I was found to be highest than all other isotopes of iodine. The concentrations of 133I were found to be higher and concentrations of 134I were observed to be lower in both milk and meat compared to other radio isotopes of iodine. In the case of a radiological accident, the results of the present study will be a valuable guide for adopting radiological safety measures for radiation protection against the ingestion of vegetables, milk and meat from around the research reactor at AERE, Savar, Bangladesh.
文摘针对坐落于意大利帕维亚大学的TRIGA Mark Ⅱ反应堆热柱结构进行优化设计,从而满足面向硼中子俘获治疗(BNCT)的单光子发射计算机断层成像(SPECT)研究要求。为提高计算效率并减小统计误差,对比分析使用SSW/SSR方法与直接使用反应堆为源项时热柱内照射位置处中子能谱,其结果基本一致,从而验证了SSW/SSR方法的可靠性。为在该反应堆开展BNCT中SPECT实验,热柱中子束需准直为笔形束。对比分析四种热柱优化方案下束流口处及探测器处热中子和光子通量:40cm长石墨(射束口5cm×3cm);0.5cm厚硼包裹40cm长石墨(射束口5cm×3cm);30cm长天然锂聚乙烯(射束口直径4cm);30cm长天然锂聚乙烯(20cm长射束口直径5cm,5cm长射束口直径4cm,5cm长射束口直径2cm)。结果显示,射束口处热中子通量分别为1.05×108,2.52×107,6.08×107和5.10×107#/(cm2·s)。综合考虑中子准直效果及光子污染,方案三具有最优性能。为后续进行BNCT-SPECT理论和实验研究提供了基础,从而有效促进BNCT剂量准确评估方法的研究进程。
文摘The assessment of the radiological concentration of <sup>134</sup>Cs and <sup>137</sup>Cs owing to hypothetical accident of TRIGA Mark-II research Reactor at AERE, Savar, Bangladesh is presented here in this work. The concentration of <sup>134</sup>Cs and <sup>137</sup>Cs was estimated in different pathways consisting of the ingestion of plants, milk, and meat. The highest air concentration has been determined at 65 m distance from the core of the reactor. The maximum concentration passed off without delay simply after the accident in various directions. Local meteorological information such as average wind velocity and wind frequency were analyzed. Considering all directions, the highest concentration has been observed in the “S” direction. The concentrations of <sup>134</sup>Cs and <sup>137</sup>Cs were determined in ground, vegetation, milk and meat. The concentration of <sup>137</sup>Cs is investigated to be higher than the <sup>134</sup>Cs. The concentration of <sup>134</sup>Cs and <sup>137</sup>Cs was found to be lower in vegetation, milk, and meat than that of ground concentration. Overall, in this study, the concentration in meat has been investigated to be lower. In case of a reactor accident, the concentration assessment due to the ingestion of vegetables, milk, and meat will be a valuable guide for insuring radiological protection across the research reactor at AERE, Savar, Bangladesh.
文摘The COOLOD-N2 and PARET computer codes were used for a steady-state thermal hydraulic and safety analysis of the 3 MW TRIGA Mark-II research reactor located at Atomic Energy Research Establishment (AERE), Savar, Dhaka, Bangladesh. The objective of the present study is to ensure that all important safety related thermal hydraulic parameters uphold margins far below the safety limits by steady-state calculations at full power. We, therefore, have calculated the hot channel fuel centreline temperature, fuel surface temperature, cladding surface temperature, the departure from nucleate boiling (DNB) heat flux and DNB ratio, axial fuel centreline temperature and compared. The comparison indicates that the calculated values are in satisfactory agreement between the codes. The data obtained in this investigation are largely far to compromise safety of the reactor. The results can also be used to upgrade the current core configuration of the TRIGA reactor.
文摘In this paper, the evaluation of a preliminary design of a PGAA (prompt gamma activation analysis) facility based on Monte Carlo simulations is presented and discussed. The implementation of the PGAA method at the CDTN (nuclear technology development centre) would increase the applications of the TRIGA reactor. The preliminary design is based on a quasi vertical hollow cylinder (called neutron extractor) in the reactor pool to extract the neutron flux. This study evaluates the neutron flux in the upper position of the cylinder in the suggested position of the samples to be analyzed by the PGAA. The calculations of the radioactive capture reaction rates and of the detection limits for some isotopes were performed. Through all these calculations, the feasibility of the application of the PGAA method at the IPR-R1 installations was evaluated. According to the obtained results, it can be concluded that is possible to apply the PGAA method at the IPR-R1 reactor, even with its design restrictions.
文摘During the past five decades, the TRIGA reactor Vienna has reached a top place in utilization among low power research reactors. This paper discussed the highlights of the major neutron physics experiments in the field of neutron interferometry and ultra-small angle neutron scattering as well as in the field of radiochemistry, education and training and research in the field of nuclear safeguards and nuclear security. Potential further directions of research are outlined where the Atominstitut of Vienna might concentrate in future.