Quantum light sources are the core resources for photonics-based quantum information processing.We investigate the spectral engineering of photon triplets generated by third-order spontaneous parametric down-conversio...Quantum light sources are the core resources for photonics-based quantum information processing.We investigate the spectral engineering of photon triplets generated by third-order spontaneous parametric down-conversion in micro/nanofiber.The phase mismatching at one-third pump frequency gives rise to non-degenerate photon triplets,the joint spectral intensity of which has an elliptical locus with a fixed eccentricity of√6/3.Therefore,we propose a frequency-division scheme to separate non-degenerate photon triplets into three channels with high heralding efficiency for the first time.Choosing an appropriate pump wavelength can compensate for the fabrication errors of micro/nanofiber and also generate narrowband,non-degenerate photon triplet sources with a high signal-to-noise ratio.Furthermore,the long-period micro/nanofiber grating introduces a new controllable degree of freedom to tailor phase matching,resulting from the periodic oscillation of dispersion.In this scheme,the wavelength of photon triplets can be flexibly tuned using quasi-phase matching.We study the generation of photon triplets from this novel perspective of spectrum engineering,and we believe that this work will accelerate the practical implementation of photon triplets in quantum information processing.展开更多
Accurate diagnosis of apple leaf diseases is crucial for improving the quality of apple production and promoting the development of the apple industry. However, apple leaf diseases do not differ significantly from ima...Accurate diagnosis of apple leaf diseases is crucial for improving the quality of apple production and promoting the development of the apple industry. However, apple leaf diseases do not differ significantly from image texture and structural information. The difficulties in disease feature extraction in complex backgrounds slow the related research progress. To address the problems, this paper proposes an improved multi-scale inverse bottleneck residual network model based on a triplet parallel attention mechanism, which is built upon ResNet-50, while improving and combining the inception module and ResNext inverse bottleneck blocks, to recognize seven types of apple leaf(including six diseases of alternaria leaf spot, brown spot, grey spot, mosaic, rust, scab, and one healthy). First, the 3×3 convolutions in some of the residual modules are replaced by multi-scale residual convolutions, the convolution kernels of different sizes contained in each branch of the multi-scale convolution are applied to extract feature maps of different sizes, and the outputs of these branches are multi-scale fused by summing to enrich the output features of the images. Second, the global layer-wise dynamic coordinated inverse bottleneck structure is used to reduce the network feature loss. The inverse bottleneck structure makes the image information less lossy when transforming from different dimensional feature spaces. The fusion of multi-scale and layer-wise dynamic coordinated inverse bottlenecks makes the model effectively balances computational efficiency and feature representation capability, and more robust with a combination of horizontal and vertical features in the fine identification of apple leaf diseases. Finally, after each improved module, a triplet parallel attention module is integrated with cross-dimensional interactions among channels through rotations and residual transformations, which improves the parallel search efficiency of important features and the recognition rate of the network with relatively small computational costs while the dimensional dependencies are improved. To verify the validity of the model in this paper, we uniformly enhance apple leaf disease images screened from the public data sets of Plant Village, Baidu Flying Paddle, and the Internet. The final processed image count is 14,000. The ablation study, pre-processing comparison, and method comparison are conducted on the processed datasets. The experimental results demonstrate that the proposed method reaches 98.73% accuracy on the adopted datasets, which is 1.82% higher than the classical ResNet-50 model, and 0.29% better than the apple leaf disease datasets before preprocessing. It also achieves competitive results in apple leaf disease identification compared to some state-ofthe-art methods.展开更多
Recent days,Image retrieval has become a tedious process as the image database has grown very larger.The introduction of Machine Learning(ML)and Deep Learning(DL)made this process more comfortable.In these,the pair-wi...Recent days,Image retrieval has become a tedious process as the image database has grown very larger.The introduction of Machine Learning(ML)and Deep Learning(DL)made this process more comfortable.In these,the pair-wise label similarity is used tofind the matching images from the database.But this method lacks of limited propose code and weak execution of misclassified images.In order to get-rid of the above problem,a novel triplet based label that incorporates context-spatial similarity measure is proposed.A Point Attention Based Triplet Network(PABTN)is introduced to study propose code that gives maximum discriminative ability.To improve the performance of ranking,a corre-lating resolutions for the classification,triplet labels based onfindings,a spatial-attention mechanism and Region Of Interest(ROI)and small trial information loss containing a new triplet cross-entropy loss are used.From the experimental results,it is shown that the proposed technique exhibits better results in terms of mean Reciprocal Rank(mRR)and mean Average Precision(mAP)in the CIFAR-10 and NUS-WIPE datasets.展开更多
The facial landmarks can provide valuable information for expression-related tasks.However,most approaches only use landmarks for segmentation preprocessing or directly input them into the neural network for fully con...The facial landmarks can provide valuable information for expression-related tasks.However,most approaches only use landmarks for segmentation preprocessing or directly input them into the neural network for fully connection.Such simple combination not only fails to pass the spatial information to network,but also increases calculation amounts.The method proposed in this paper aims to integrate facial landmarks-driven representation into the triplet network.The spatial information provided by landmarks is introduced into the feature extraction process,so that the model can better capture the location relationship.In addition,coordinate information is also integrated into the triple loss calculation to further enhance similarity prediction.Specifically,for each image,the coordinates of 68 landmarks are detected,and then a region attention map based on these landmarks is generated.For the feature map output by the shallow convolutional layer,it will be multiplied with the attention map to correct the feature activation,so as to strengthen the key region and weaken the unimportant region.Finally,the optimized embedding output can be further used for downstream tasks.Three embeddings of three images output by the network can be regarded as a triplet representation for similarity computation.Through the CK+dataset,the effectiveness of such an optimized feature extraction is verified.After that,it is applied to facial expression similarity tasks.The results on the facial expression comparison(FEC)dataset show that the accuracy rate will be significantly improved after the landmark information is introduced.展开更多
We consider an energy operator of four-electron system in the Impurity Hubbard model with a coupling between nearest-neighbors. The spectrum of the systems in the second triplet state in a ν-dimensional lattice is in...We consider an energy operator of four-electron system in the Impurity Hubbard model with a coupling between nearest-neighbors. The spectrum of the systems in the second triplet state in a ν-dimensional lattice is investigated. For investigation the structure of essential spectra and discrete spectrum of the energy operator of four-electron systems in an impurity Hubbard model, for which the momentum representation is convenient. In addition, we used the tensor products of Hilbert spaces and tensor products of operators in Hilbert spaces and described the structure of essential spectrum and discrete spectrum of the energy operator of four-electron systems in an impurity Hubbard model for the second triplet state of the system. The investigations show that the essential spectrum of the system consists of the union of no more than sixteen segments, and the discrete spectrum of the system consists of no more than eleven eigenvalues.展开更多
Background: Monochorionic triamniotic (MCTA) triplet pregnancy is a rare entity associated with a high risk of complications. In most previously reported cases, the pregnancy was conceived with the use of assisted rep...Background: Monochorionic triamniotic (MCTA) triplet pregnancy is a rare entity associated with a high risk of complications. In most previously reported cases, the pregnancy was conceived with the use of assisted reproductive technologies, and these cases were associated with complications. Case Presentation: We report a 28-year-old woman with a spontaneously conceived MCTA triplet pregnancy diagnosed at the gestational age of 26 weeks. All fetuses had normal amniotic fluid and umbilical artery Doppler findings were normal. The estimated weight of fetuses was 848 g, 891 g, and 1 kg, respectively. The patient was managed conservatively with a plan to monitor fetal growth every two weeks and a Doppler study twice weekly. On the 8<sup>th</sup> day of admission, the patient developed labor pains. Per vaginal examination revealed 1 - 2 cm cervical dilatation. Cesarean section was performed, and three girls were delivered with a single placenta (birth weight: 820, 925, and 960 g, respectively). Conclusion: Monochorionic triplet pregnancy is associated with a higher risk of fetal morbidity and mortality. Therefore, awareness of its complications can facilitate better management of such cases.展开更多
A new cyclometalated iridium(IlI) complex Ir(DPP)3 (DPP=2,3-diphenylpyrazine) was prepared by reaction of DPP with iridium trichloride hydrate under microwave irradiation. The structure of the complex was confir...A new cyclometalated iridium(IlI) complex Ir(DPP)3 (DPP=2,3-diphenylpyrazine) was prepared by reaction of DPP with iridium trichloride hydrate under microwave irradiation. The structure of the complex was confirmed by elemental analysis, ^1H NMR, and mass spectroscopy. The UV-Vis absorption and photoluminescent properties of the complex were investigated. The complex shows strong ^1MLCT (singlet metal to ligand charge-transfer) and aMLCT (triplet metal to ligand charge-transfer) absorption at 382 and 504 nm, respectively. The complex also shows strong photoluminescence at 573 nm at room temperature. These results suggest the complex to be a promising phosphorescent material.展开更多
Analysis of the secondary structures of mRNAs which encode mature peptides shows that the location of each codon in mRNA secondary structure has a trend, which appears to be in agreement with the conformational proper...Analysis of the secondary structures of mRNAs which encode mature peptides shows that the location of each codon in mRNA secondary structure has a trend, which appears to be in agreement with the conformational property of the corresponding amino acid to some extent. Most of the codons that encode hydrophobic amino acids are located in stable stem regions of mRNA secondary structures, and vice versa, most of the codons that encode hydrophilic amino acids are located in flexible loop regions. This result supports the recent conclusion that there may be the information transfer between the three dimensional structures of mRNA and the encoded protein.展开更多
The formation of triplet chlorophyll and carotenoid by radical pair recombination have been observed in the reaction centers of photosystems of bacteria and higher plants. This is an important process for the photopro...The formation of triplet chlorophyll and carotenoid by radical pair recombination have been observed in the reaction centers of photosystems of bacteria and higher plants. This is an important process for the photoprotection of the reaction centers, for the dissipation of excessive energy by non_radiative decay of carotenoid triplet. Triplet generation by the same mechanism in an artificial system has rarely been observed, only a few cases were reported in donor_acceptor triad supermolecules. This is probably the first time report of the simulation of the generation of triplet by back electron transfer using dye_sensitized TiO 2 solar cell reaction. Triplet states have been observed in all_ trans _retinoic acid sensitized TiO 2 colloid during the recombination of the trapped electron with the retinoic acid radical cation after photoexcitation. The intermediates were characterized by ns time_resolved spectroscopy.展开更多
A new approach to the research of the distribution of prime-triplets is developed. It differs from the usual methods (involving the sieve method) for this kind of research, and basing on Chebyshev inequality and on th...A new approach to the research of the distribution of prime-triplets is developed. It differs from the usual methods (involving the sieve method) for this kind of research, and basing on Chebyshev inequality and on the computation of average concentration of all the related subset. It leads to the proofs of following Lemma 2 and Theorem 2 (Lemma 1 and Theorem 1 in Reference 1 had been proved by means of this new method): Lemma 2 Among all the prime-triplet-subsets there exists at least one such subset which is an infinite set. Theorem 2 All the prime-triplet-subsets or infinitely many such subsets are infinite sets.Formulas for estimating the amount of such infinite sets are provided in this paper.展开更多
Triplet-triplet energy transfer in fluorene dimer with electronic structure calculations. The two is investigated by combining rate theories key parameters for the control of energy transfer, electronic coupling and r...Triplet-triplet energy transfer in fluorene dimer with electronic structure calculations. The two is investigated by combining rate theories key parameters for the control of energy transfer, electronic coupling and reorganization energy, are calculated based on the diabatic states constructed by the constrained density functional theory. The fluctuation of the electronic coupling is further revealed by molecular dynamics simulation. Succeedingly, the diagonal and off-diagonal fluctuations of the Hamiltonian are mapped from the correlation functions of those parameters, and the rate is then estimated both from the perturbation theory and wavepacket diffusion method. The results manifest that both the static and dynamic fluctuations enhance the rate significantly, but the rate from the dynamic fluctuation is smaller than that from the static fluctuation.展开更多
This work aimed at investigating the crucial factor in building and maintaining the combustion front during in-situ combustion(ISC),oxidized coke and pyrolyzed coke.The surface morphologies,elemental contents,and non-...This work aimed at investigating the crucial factor in building and maintaining the combustion front during in-situ combustion(ISC),oxidized coke and pyrolyzed coke.The surface morphologies,elemental contents,and non-isothermal mass losses of the oxidized and pyrolyzed cokes were thoroughly examined.The results indicated that the oxidized coke could be combusted at a lower temperature compared to the pyrolyzed coke due primarily to their differences in the molecular polarity and microstructure.Kinetic triplets of coke combustion were determined using iso-conversional models and one advanced integral master plots method.The activation energy values of the oxidized and pyrolyzed cokes varied in the range of 130-153 k J/mol and 95-120 kJ/mol,respectively.The most appropriate reaction model of combustion of the oxidized and pyrolyzed cokes followed three-dimensional diffusion model(D_(3)) and random nucleation and subsequent growth model(F_(1)),respectively.These observations assisted in building the numerical model of these two types of cokes to simulate the ISC process.展开更多
Tunneling conductance in normal metal/insulator/triplet superconductor junctions is studied theoretically as a function of the bias voltage at zero temperature and finite temperature. The results show there are zero-b...Tunneling conductance in normal metal/insulator/triplet superconductor junctions is studied theoretically as a function of the bias voltage at zero temperature and finite temperature. The results show there are zero-bias conductance peak, zero-bias conductance dip and double-minimum structures in the spectra for p-wave superconductor junctions. The existence of such structures in the conductance spectrum can be taken as evidence that the pairing symmetry of Sr2RuO4 is p-wave symmetry.展开更多
BACKGROUND Peritoneal metastasis from colorectal cancer(CRC)carries a poor prognosis in most studies.The majority of those studies used either a single-agent or doublet chemotherapy regimen in the first-line setting.A...BACKGROUND Peritoneal metastasis from colorectal cancer(CRC)carries a poor prognosis in most studies.The majority of those studies used either a single-agent or doublet chemotherapy regimen in the first-line setting.AIM To investigate the prognostic significance of peritoneal metastasis in a cohort of patients treated with triplet chemotherapy in the first-line setting.METHODS We retrospectively evaluated progression-free survival(PFS)and overall survival(OS)in 51 patients with metastatic CRC treated in a prospective clinical trial with capecitabine,oxaliplatin,irinotecan,and bevacizumab in the first-line setting according to the presence and absence of peritoneal metastasis.Furthermore,univariate and multivariate analyses for PFS and OS were performed to assess the prognostic significance of peritoneal metastasis at the multivariate level.RESULTS Fifty-one patients were treated with the above triplet therapy.Fifteen had peritoneal metastasis.The patient characteristics of both groups showed a significant difference in the sidedness of the primary tumor(left-sided primary tumor in 60%of the peritoneal group vs 86%in the nonperitoneal group,P=0.03)and the presence of liver metastasis(40%for the peritoneal group vs 75%for the nonperitoneal group,P=0.01).Univariate analysis for PFS showed a statistically significant difference for age less than 65 years(P=0.034),presence of liver metastasis(P=0.046),lung metastasis(P=0.011),and those who underwent metastasectomy(P=0.001).Only liver metastasis and metastasectomy were statistically significant for OS,with P values of 0.001 and 0.002,respectively.Multivariate analysis showed that age(less than 65 years)and metastasectomy were statistically significant for PFS,with P values of 0.002 and 0.001,respectively.On the other hand,the absence of liver metastasis and metastasectomy were statistically significant for OS,with P values of 0.003 and 0.005,respectively.CONCLUSION Peritoneal metastasis in patients with metastatic CRC treated with first-line triple chemotherapy does not carry prognostic significance at univariate and multivariate levels.Confirmatory larger studies are warranted.展开更多
In this paper, the singlet and triplet state electron transfer processes between hypocrellin A(HA) and aromatic amines in solvents of various polarity have been studied by fluorescence and time-resolved transient abso...In this paper, the singlet and triplet state electron transfer processes between hypocrellin A(HA) and aromatic amines in solvents of various polarity have been studied by fluorescence and time-resolved transient absorption spectra. The results show,in.polar solvent, the quenching of HA fluorescence by aromatic amines results in Stern-Volmer plot, the investigation of transient absorption indicated that triplet-state electron transfer process from 3HA to the ground-state of amines occured, and the wines of the singlet and triplet state electron transfer rate constant were calculated, however in weak polar solvent, only the triplet-triplet absorption of HA was observed.展开更多
We study the stability of vortices pinning and dynamics in a superconducting thin strip containing a square array of antidot triplets by using the nonlinear Ginzburg–Landau(GL)theory.Compared with the regular square ...We study the stability of vortices pinning and dynamics in a superconducting thin strip containing a square array of antidot triplets by using the nonlinear Ginzburg–Landau(GL)theory.Compared with the regular square array of circular holes,the vortices are no longer pinned inside the circular holes,but instead stabilized at the center of the antidot triplets depending on the geometry parameters.Moreover,the influences of the geometry parameters and the polarity of the applied current on the current–voltage(I–V)characteristics are also studied.The critical current for the sample turning into a normal state becomes smaller when the hole diameter D is smaller and the spacing B between the holes is larger.Due to the asymmetric pinning sites,our numerical simulations demonstrate that the positive and negative rectified voltages appear alternately in the resistive state of the sample under an ac current of square pulses.展开更多
We consider the energy operator of four-electron systems in an impurity Hubbard model and investigated the structure of essential spectra and discrete spectrum of the system in the first triplet state in a one-dimensi...We consider the energy operator of four-electron systems in an impurity Hubbard model and investigated the structure of essential spectra and discrete spectrum of the system in the first triplet state in a one-dimensional lattice. For investigation the structure of essential spectra and discrete spectrum of the energy operator of four-electron systems in an impurity Hubbard model, for which the momentum representation is convenient. In addition, we used the tensor products of Hilbert spaces and tensor products of operators in Hilbert spaces and described the structure of essential spectrum and discrete spectrum of the energy operator of four-electron systems in an impurity Hubbard model. The investigations show that there are such cases: 1) the essential spectrum of the system consists of the union of no more than eight segments, and the discrete spectrum of the system consists of no more than three eigenvalues;2) the essential spectrum of the system consists of the union of no more than sixteen segments, and the discrete spectrum of the system consists of no more than eleven eigenvalues;3) the essential spectrum of the system consists of the union of no more than three segments, and the discrete spectrum of the system is the empty set. Consequently, the essential spectrum of the system consists of the union of no more than sixteen segments, and the discrete spectrum of the system consists of no more than eleven eigenvalues.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61605249)the Science and Technology Key Project of Henan Province of China(Grant Nos.182102210577 and 232102211086).
文摘Quantum light sources are the core resources for photonics-based quantum information processing.We investigate the spectral engineering of photon triplets generated by third-order spontaneous parametric down-conversion in micro/nanofiber.The phase mismatching at one-third pump frequency gives rise to non-degenerate photon triplets,the joint spectral intensity of which has an elliptical locus with a fixed eccentricity of√6/3.Therefore,we propose a frequency-division scheme to separate non-degenerate photon triplets into three channels with high heralding efficiency for the first time.Choosing an appropriate pump wavelength can compensate for the fabrication errors of micro/nanofiber and also generate narrowband,non-degenerate photon triplet sources with a high signal-to-noise ratio.Furthermore,the long-period micro/nanofiber grating introduces a new controllable degree of freedom to tailor phase matching,resulting from the periodic oscillation of dispersion.In this scheme,the wavelength of photon triplets can be flexibly tuned using quasi-phase matching.We study the generation of photon triplets from this novel perspective of spectrum engineering,and we believe that this work will accelerate the practical implementation of photon triplets in quantum information processing.
基金supported in part by the General Program Hunan Provincial Natural Science Foundation of 2022,China(2022JJ31022)the Undergraduate Education Reform Project of Hunan Province,China(HNJG-20210532)the National Natural Science Foundation of China(62276276)。
文摘Accurate diagnosis of apple leaf diseases is crucial for improving the quality of apple production and promoting the development of the apple industry. However, apple leaf diseases do not differ significantly from image texture and structural information. The difficulties in disease feature extraction in complex backgrounds slow the related research progress. To address the problems, this paper proposes an improved multi-scale inverse bottleneck residual network model based on a triplet parallel attention mechanism, which is built upon ResNet-50, while improving and combining the inception module and ResNext inverse bottleneck blocks, to recognize seven types of apple leaf(including six diseases of alternaria leaf spot, brown spot, grey spot, mosaic, rust, scab, and one healthy). First, the 3×3 convolutions in some of the residual modules are replaced by multi-scale residual convolutions, the convolution kernels of different sizes contained in each branch of the multi-scale convolution are applied to extract feature maps of different sizes, and the outputs of these branches are multi-scale fused by summing to enrich the output features of the images. Second, the global layer-wise dynamic coordinated inverse bottleneck structure is used to reduce the network feature loss. The inverse bottleneck structure makes the image information less lossy when transforming from different dimensional feature spaces. The fusion of multi-scale and layer-wise dynamic coordinated inverse bottlenecks makes the model effectively balances computational efficiency and feature representation capability, and more robust with a combination of horizontal and vertical features in the fine identification of apple leaf diseases. Finally, after each improved module, a triplet parallel attention module is integrated with cross-dimensional interactions among channels through rotations and residual transformations, which improves the parallel search efficiency of important features and the recognition rate of the network with relatively small computational costs while the dimensional dependencies are improved. To verify the validity of the model in this paper, we uniformly enhance apple leaf disease images screened from the public data sets of Plant Village, Baidu Flying Paddle, and the Internet. The final processed image count is 14,000. The ablation study, pre-processing comparison, and method comparison are conducted on the processed datasets. The experimental results demonstrate that the proposed method reaches 98.73% accuracy on the adopted datasets, which is 1.82% higher than the classical ResNet-50 model, and 0.29% better than the apple leaf disease datasets before preprocessing. It also achieves competitive results in apple leaf disease identification compared to some state-ofthe-art methods.
文摘Recent days,Image retrieval has become a tedious process as the image database has grown very larger.The introduction of Machine Learning(ML)and Deep Learning(DL)made this process more comfortable.In these,the pair-wise label similarity is used tofind the matching images from the database.But this method lacks of limited propose code and weak execution of misclassified images.In order to get-rid of the above problem,a novel triplet based label that incorporates context-spatial similarity measure is proposed.A Point Attention Based Triplet Network(PABTN)is introduced to study propose code that gives maximum discriminative ability.To improve the performance of ranking,a corre-lating resolutions for the classification,triplet labels based onfindings,a spatial-attention mechanism and Region Of Interest(ROI)and small trial information loss containing a new triplet cross-entropy loss are used.From the experimental results,it is shown that the proposed technique exhibits better results in terms of mean Reciprocal Rank(mRR)and mean Average Precision(mAP)in the CIFAR-10 and NUS-WIPE datasets.
文摘The facial landmarks can provide valuable information for expression-related tasks.However,most approaches only use landmarks for segmentation preprocessing or directly input them into the neural network for fully connection.Such simple combination not only fails to pass the spatial information to network,but also increases calculation amounts.The method proposed in this paper aims to integrate facial landmarks-driven representation into the triplet network.The spatial information provided by landmarks is introduced into the feature extraction process,so that the model can better capture the location relationship.In addition,coordinate information is also integrated into the triple loss calculation to further enhance similarity prediction.Specifically,for each image,the coordinates of 68 landmarks are detected,and then a region attention map based on these landmarks is generated.For the feature map output by the shallow convolutional layer,it will be multiplied with the attention map to correct the feature activation,so as to strengthen the key region and weaken the unimportant region.Finally,the optimized embedding output can be further used for downstream tasks.Three embeddings of three images output by the network can be regarded as a triplet representation for similarity computation.Through the CK+dataset,the effectiveness of such an optimized feature extraction is verified.After that,it is applied to facial expression similarity tasks.The results on the facial expression comparison(FEC)dataset show that the accuracy rate will be significantly improved after the landmark information is introduced.
文摘We consider an energy operator of four-electron system in the Impurity Hubbard model with a coupling between nearest-neighbors. The spectrum of the systems in the second triplet state in a ν-dimensional lattice is investigated. For investigation the structure of essential spectra and discrete spectrum of the energy operator of four-electron systems in an impurity Hubbard model, for which the momentum representation is convenient. In addition, we used the tensor products of Hilbert spaces and tensor products of operators in Hilbert spaces and described the structure of essential spectrum and discrete spectrum of the energy operator of four-electron systems in an impurity Hubbard model for the second triplet state of the system. The investigations show that the essential spectrum of the system consists of the union of no more than sixteen segments, and the discrete spectrum of the system consists of no more than eleven eigenvalues.
文摘Background: Monochorionic triamniotic (MCTA) triplet pregnancy is a rare entity associated with a high risk of complications. In most previously reported cases, the pregnancy was conceived with the use of assisted reproductive technologies, and these cases were associated with complications. Case Presentation: We report a 28-year-old woman with a spontaneously conceived MCTA triplet pregnancy diagnosed at the gestational age of 26 weeks. All fetuses had normal amniotic fluid and umbilical artery Doppler findings were normal. The estimated weight of fetuses was 848 g, 891 g, and 1 kg, respectively. The patient was managed conservatively with a plan to monitor fetal growth every two weeks and a Doppler study twice weekly. On the 8<sup>th</sup> day of admission, the patient developed labor pains. Per vaginal examination revealed 1 - 2 cm cervical dilatation. Cesarean section was performed, and three girls were delivered with a single placenta (birth weight: 820, 925, and 960 g, respectively). Conclusion: Monochorionic triplet pregnancy is associated with a higher risk of fetal morbidity and mortality. Therefore, awareness of its complications can facilitate better management of such cases.
文摘A new cyclometalated iridium(IlI) complex Ir(DPP)3 (DPP=2,3-diphenylpyrazine) was prepared by reaction of DPP with iridium trichloride hydrate under microwave irradiation. The structure of the complex was confirmed by elemental analysis, ^1H NMR, and mass spectroscopy. The UV-Vis absorption and photoluminescent properties of the complex were investigated. The complex shows strong ^1MLCT (singlet metal to ligand charge-transfer) and aMLCT (triplet metal to ligand charge-transfer) absorption at 382 and 504 nm, respectively. The complex also shows strong photoluminescence at 573 nm at room temperature. These results suggest the complex to be a promising phosphorescent material.
文摘Analysis of the secondary structures of mRNAs which encode mature peptides shows that the location of each codon in mRNA secondary structure has a trend, which appears to be in agreement with the conformational property of the corresponding amino acid to some extent. Most of the codons that encode hydrophobic amino acids are located in stable stem regions of mRNA secondary structures, and vice versa, most of the codons that encode hydrophilic amino acids are located in flexible loop regions. This result supports the recent conclusion that there may be the information transfer between the three dimensional structures of mRNA and the encoded protein.
基金The Fund of"Hundred Talents Program"the National Key Basic Research and Development(973)Plan(G1998010102).
文摘The formation of triplet chlorophyll and carotenoid by radical pair recombination have been observed in the reaction centers of photosystems of bacteria and higher plants. This is an important process for the photoprotection of the reaction centers, for the dissipation of excessive energy by non_radiative decay of carotenoid triplet. Triplet generation by the same mechanism in an artificial system has rarely been observed, only a few cases were reported in donor_acceptor triad supermolecules. This is probably the first time report of the simulation of the generation of triplet by back electron transfer using dye_sensitized TiO 2 solar cell reaction. Triplet states have been observed in all_ trans _retinoic acid sensitized TiO 2 colloid during the recombination of the trapped electron with the retinoic acid radical cation after photoexcitation. The intermediates were characterized by ns time_resolved spectroscopy.
文摘A new approach to the research of the distribution of prime-triplets is developed. It differs from the usual methods (involving the sieve method) for this kind of research, and basing on Chebyshev inequality and on the computation of average concentration of all the related subset. It leads to the proofs of following Lemma 2 and Theorem 2 (Lemma 1 and Theorem 1 in Reference 1 had been proved by means of this new method): Lemma 2 Among all the prime-triplet-subsets there exists at least one such subset which is an infinite set. Theorem 2 All the prime-triplet-subsets or infinitely many such subsets are infinite sets.Formulas for estimating the amount of such infinite sets are provided in this paper.
基金This work was supported by the National Natural Science Foundation of China (No.20833004 and No.21073146) and the Research Fund for the Doctoral Program of Higher Education of China (No.200803840009).
文摘Triplet-triplet energy transfer in fluorene dimer with electronic structure calculations. The two is investigated by combining rate theories key parameters for the control of energy transfer, electronic coupling and reorganization energy, are calculated based on the diabatic states constructed by the constrained density functional theory. The fluctuation of the electronic coupling is further revealed by molecular dynamics simulation. Succeedingly, the diagonal and off-diagonal fluctuations of the Hamiltonian are mapped from the correlation functions of those parameters, and the rate is then estimated both from the perturbation theory and wavepacket diffusion method. The results manifest that both the static and dynamic fluctuations enhance the rate significantly, but the rate from the dynamic fluctuation is smaller than that from the static fluctuation.
基金supported by Chinese Postdoctoral Science Foundation (2021M692696)the National Science and Technology Project (2016ZX05058-003-017)Sichuan Science and Technology Program (2021YFH0081)。
文摘This work aimed at investigating the crucial factor in building and maintaining the combustion front during in-situ combustion(ISC),oxidized coke and pyrolyzed coke.The surface morphologies,elemental contents,and non-isothermal mass losses of the oxidized and pyrolyzed cokes were thoroughly examined.The results indicated that the oxidized coke could be combusted at a lower temperature compared to the pyrolyzed coke due primarily to their differences in the molecular polarity and microstructure.Kinetic triplets of coke combustion were determined using iso-conversional models and one advanced integral master plots method.The activation energy values of the oxidized and pyrolyzed cokes varied in the range of 130-153 k J/mol and 95-120 kJ/mol,respectively.The most appropriate reaction model of combustion of the oxidized and pyrolyzed cokes followed three-dimensional diffusion model(D_(3)) and random nucleation and subsequent growth model(F_(1)),respectively.These observations assisted in building the numerical model of these two types of cokes to simulate the ISC process.
文摘Tunneling conductance in normal metal/insulator/triplet superconductor junctions is studied theoretically as a function of the bias voltage at zero temperature and finite temperature. The results show there are zero-bias conductance peak, zero-bias conductance dip and double-minimum structures in the spectra for p-wave superconductor junctions. The existence of such structures in the conductance spectrum can be taken as evidence that the pairing symmetry of Sr2RuO4 is p-wave symmetry.
文摘BACKGROUND Peritoneal metastasis from colorectal cancer(CRC)carries a poor prognosis in most studies.The majority of those studies used either a single-agent or doublet chemotherapy regimen in the first-line setting.AIM To investigate the prognostic significance of peritoneal metastasis in a cohort of patients treated with triplet chemotherapy in the first-line setting.METHODS We retrospectively evaluated progression-free survival(PFS)and overall survival(OS)in 51 patients with metastatic CRC treated in a prospective clinical trial with capecitabine,oxaliplatin,irinotecan,and bevacizumab in the first-line setting according to the presence and absence of peritoneal metastasis.Furthermore,univariate and multivariate analyses for PFS and OS were performed to assess the prognostic significance of peritoneal metastasis at the multivariate level.RESULTS Fifty-one patients were treated with the above triplet therapy.Fifteen had peritoneal metastasis.The patient characteristics of both groups showed a significant difference in the sidedness of the primary tumor(left-sided primary tumor in 60%of the peritoneal group vs 86%in the nonperitoneal group,P=0.03)and the presence of liver metastasis(40%for the peritoneal group vs 75%for the nonperitoneal group,P=0.01).Univariate analysis for PFS showed a statistically significant difference for age less than 65 years(P=0.034),presence of liver metastasis(P=0.046),lung metastasis(P=0.011),and those who underwent metastasectomy(P=0.001).Only liver metastasis and metastasectomy were statistically significant for OS,with P values of 0.001 and 0.002,respectively.Multivariate analysis showed that age(less than 65 years)and metastasectomy were statistically significant for PFS,with P values of 0.002 and 0.001,respectively.On the other hand,the absence of liver metastasis and metastasectomy were statistically significant for OS,with P values of 0.003 and 0.005,respectively.CONCLUSION Peritoneal metastasis in patients with metastatic CRC treated with first-line triple chemotherapy does not carry prognostic significance at univariate and multivariate levels.Confirmatory larger studies are warranted.
文摘In this paper, the singlet and triplet state electron transfer processes between hypocrellin A(HA) and aromatic amines in solvents of various polarity have been studied by fluorescence and time-resolved transient absorption spectra. The results show,in.polar solvent, the quenching of HA fluorescence by aromatic amines results in Stern-Volmer plot, the investigation of transient absorption indicated that triplet-state electron transfer process from 3HA to the ground-state of amines occured, and the wines of the singlet and triplet state electron transfer rate constant were calculated, however in weak polar solvent, only the triplet-triplet absorption of HA was observed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11702034,11702218,and 11421062)Fundamental Research Funds for the Central Universities,China(Grant Nos.310812171011 and G2016KY0305)the National Key Project of Magneto-Constrained Fusion Energy Development Program,China(Grant No.2013GB110002)
文摘We study the stability of vortices pinning and dynamics in a superconducting thin strip containing a square array of antidot triplets by using the nonlinear Ginzburg–Landau(GL)theory.Compared with the regular square array of circular holes,the vortices are no longer pinned inside the circular holes,but instead stabilized at the center of the antidot triplets depending on the geometry parameters.Moreover,the influences of the geometry parameters and the polarity of the applied current on the current–voltage(I–V)characteristics are also studied.The critical current for the sample turning into a normal state becomes smaller when the hole diameter D is smaller and the spacing B between the holes is larger.Due to the asymmetric pinning sites,our numerical simulations demonstrate that the positive and negative rectified voltages appear alternately in the resistive state of the sample under an ac current of square pulses.
文摘We consider the energy operator of four-electron systems in an impurity Hubbard model and investigated the structure of essential spectra and discrete spectrum of the system in the first triplet state in a one-dimensional lattice. For investigation the structure of essential spectra and discrete spectrum of the energy operator of four-electron systems in an impurity Hubbard model, for which the momentum representation is convenient. In addition, we used the tensor products of Hilbert spaces and tensor products of operators in Hilbert spaces and described the structure of essential spectrum and discrete spectrum of the energy operator of four-electron systems in an impurity Hubbard model. The investigations show that there are such cases: 1) the essential spectrum of the system consists of the union of no more than eight segments, and the discrete spectrum of the system consists of no more than three eigenvalues;2) the essential spectrum of the system consists of the union of no more than sixteen segments, and the discrete spectrum of the system consists of no more than eleven eigenvalues;3) the essential spectrum of the system consists of the union of no more than three segments, and the discrete spectrum of the system is the empty set. Consequently, the essential spectrum of the system consists of the union of no more than sixteen segments, and the discrete spectrum of the system consists of no more than eleven eigenvalues.