The characteristics of the summer precipitation diurnal cycle over South Asia and East Asia during 2001–13 are investigated based on the high spatiotemporal resolution estimates of the CPC(Climate Prediction Center) ...The characteristics of the summer precipitation diurnal cycle over South Asia and East Asia during 2001–13 are investigated based on the high spatiotemporal resolution estimates of the CPC(Climate Prediction Center) Morphing(CMORPH) technique. The results show that summer precipitation over South Asia and East Asia possesses a remarkable diurnal cycle, with obvious regional differences. Over the coastal areas, plateau, and high mountains, summer precipitation peaks in the late afternoon; while over low altitude areas, such as valleys, basins, and inshore seas, it peaks during midnight to early morning. In addition to these general features consistent with previous studies, the high resolution CMORPH technique can depict finer regional details, such as the less coherent phase pattern over a few regions. Besides, through comparative analysis of the diurnal cycle strength and precipitation fields, the authors find that for humid areas the summer precipitation diurnal cycle is especially significant over Southeast China, the Sichuan Basin, Hainan Province, Taiwan Province, the Philippines, and Indonesia. And it is relatively weak over the south of Northeast China, central East China, Yunnan Province, the central Indian Peninsula, and most oceanic areas. Comparisons between two satellite datasets—those of the CMORPH and Tropical Rainfall Measuring Mission(TRMM) 3B42 products—are also presented. For summer precipitation and the main diurnal cycle features, the results from both products agree over most regions, except a few areas, e.g., the Tibetan Plateau.展开更多
This study evaluated Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) product i.e. TRMM 3B42 data, using data from 52 rain gauge stations around the Meichuan watershed, whic...This study evaluated Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) product i.e. TRMM 3B42 data, using data from 52 rain gauge stations around the Meichuan watershed, which is a representative watershed of Poyang Lake basin in China. Both the latest Version 7 (V7) and previous Version 6 (V6) of TRMM 3B42 data were compared and evaluated for a 9-year period covering 2001-2005 and 2007-2010. The evaluations were conducted at different spatial (grid and watershed) and temporal (daily, monthly and annual) scales. For evaluation at grid scale, the Thiessen polygon method was used to transform pointed-based rain gauge data to areal precipitation at the same grid scale (0.25°) as TRMM 3B42 data. The results showed that there was little difference in performances of V6 and V7 TRMM 3B42 products. Overall, both V6 and V7 products slightly overestimated precipitation with a bias of 0.04. At daily scale, both V6 and V7 data were considered to be unreliable with large relative RMSE (135%-199%) at the two spatial scales, and they were deficient in capturing large storms. These results suggest that local calibration with rain gauge data should be conducted before V6 and V7 TRMM 3B42 data are used at daily scale. At monthly and annual scales, V6 and V7 TRMM 3B42 data match the rain gauge data well (R2=0.91-0.99, relative RMSE = 4%-23%) at both grid and watershed scale and thus have good potential for hydrological applications.展开更多
基金supported by the National Basic Research Program of China(Grant No.2013CB430201)the China Meteorological Administration Special Fund for Scientific Research in the Public Interest(Grant No.GYHY201206008)
文摘The characteristics of the summer precipitation diurnal cycle over South Asia and East Asia during 2001–13 are investigated based on the high spatiotemporal resolution estimates of the CPC(Climate Prediction Center) Morphing(CMORPH) technique. The results show that summer precipitation over South Asia and East Asia possesses a remarkable diurnal cycle, with obvious regional differences. Over the coastal areas, plateau, and high mountains, summer precipitation peaks in the late afternoon; while over low altitude areas, such as valleys, basins, and inshore seas, it peaks during midnight to early morning. In addition to these general features consistent with previous studies, the high resolution CMORPH technique can depict finer regional details, such as the less coherent phase pattern over a few regions. Besides, through comparative analysis of the diurnal cycle strength and precipitation fields, the authors find that for humid areas the summer precipitation diurnal cycle is especially significant over Southeast China, the Sichuan Basin, Hainan Province, Taiwan Province, the Philippines, and Indonesia. And it is relatively weak over the south of Northeast China, central East China, Yunnan Province, the central Indian Peninsula, and most oceanic areas. Comparisons between two satellite datasets—those of the CMORPH and Tropical Rainfall Measuring Mission(TRMM) 3B42 products—are also presented. For summer precipitation and the main diurnal cycle features, the results from both products agree over most regions, except a few areas, e.g., the Tibetan Plateau.
基金the State High-Tech Development Plan of China (No. 2011AA120305)the National Natural Science Foundation of China (No. 41023010)
文摘This study evaluated Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) product i.e. TRMM 3B42 data, using data from 52 rain gauge stations around the Meichuan watershed, which is a representative watershed of Poyang Lake basin in China. Both the latest Version 7 (V7) and previous Version 6 (V6) of TRMM 3B42 data were compared and evaluated for a 9-year period covering 2001-2005 and 2007-2010. The evaluations were conducted at different spatial (grid and watershed) and temporal (daily, monthly and annual) scales. For evaluation at grid scale, the Thiessen polygon method was used to transform pointed-based rain gauge data to areal precipitation at the same grid scale (0.25°) as TRMM 3B42 data. The results showed that there was little difference in performances of V6 and V7 TRMM 3B42 products. Overall, both V6 and V7 products slightly overestimated precipitation with a bias of 0.04. At daily scale, both V6 and V7 data were considered to be unreliable with large relative RMSE (135%-199%) at the two spatial scales, and they were deficient in capturing large storms. These results suggest that local calibration with rain gauge data should be conducted before V6 and V7 TRMM 3B42 data are used at daily scale. At monthly and annual scales, V6 and V7 TRMM 3B42 data match the rain gauge data well (R2=0.91-0.99, relative RMSE = 4%-23%) at both grid and watershed scale and thus have good potential for hydrological applications.