Objective:To develop a novel artificial antigen-presenting system for efficiently inducing melanoma-specific CD8+CD28+ cytotoxic T lymphocyte(CTL) responses.Methods:Cell-sized Dynabeads? M-450 Epoxy beads coated wit...Objective:To develop a novel artificial antigen-presenting system for efficiently inducing melanoma-specific CD8+CD28+ cytotoxic T lymphocyte(CTL) responses.Methods:Cell-sized Dynabeads? M-450 Epoxy beads coated with H-2Kb:Ig-TRP2(181111K and anti-CD28 antibody were used as artificial antigen-presenting cells(aAPCs) lo induce melanoma-specific CD8*CD28’ CTL responses with the help of IL-2I and IL-I5.Dimer staining,proliferation,ELISPOT,and cytotoxicity experiments were conducted to evaluate the frequency and activity of induced CTLs.Results:Dimer staining demonstrated that the new artificial antigen-presenting system efficiently induced melanoma TRP2-specific CD8CD28' CTLs.Proliferation and ELISPOT assays indicated that the induced CTLs rapidly proliferate and produce increased IFN- y under the slimulalion of H-2K:Ig-TRP2-aAPCs,TL-15,and IL-21.In addition,cytoloxicily experiments showed lhat induced CTLs have specific killing activity of target cells.Conclusions:The new artificial antigen-presenting system including aAPCs plus IL-21 and IL-15 can induce a large number of antigen-specific CD8+CD28+ CTLs against the melanoma.Our study provides evidence for a novel adoptive immunotherapy against tumors.展开更多
An essential step for cancer vaccination is to break the immunosuppression and elicit a tumor-specific immunity.A major hurdle against cancer therapeutic vaccination is the insufficient immune stimulation of the cance...An essential step for cancer vaccination is to break the immunosuppression and elicit a tumor-specific immunity.A major hurdle against cancer therapeutic vaccination is the insufficient immune stimulation of the cancer vaccines and lack of a safe and efficient adjuvant for human use.We discovered a novel cancer immunostimulant,trichosanthin(TCS),that is a clinically used protein drug in China,and developed a well-adaptable protein-engineering method for making recombinant protein vaccines by fusion of an antigenic peptide,TCS,and a cell-penetrating peptide(CPP),termed an"allin-one"vaccine,for transcutaneous cancer immunization.The TCS adjuvant effect on antigen presentation was investigated and the antitumor immunity of the vaccines was investigated using the different tumor models.The vaccines were prepared via a facile recombinant method.The vaccines induced the maturation of DCs that subsequently primed CD8^(+)T cells.The TCS-based immunostimulation was associated with the STING pathway.The general applicability of this genetic engineering strategy was demonstrated with various tumor antigens(i.e.,legumain and TRP2 antigenic peptides)and tumor models(i.e.,colon tumor and melanoma).These findings represent a useful protocol for developing cancer vaccines at low cost and time-saving,and demonstrates the adjuvant application of TCSdan old drug for a new application.展开更多
TRPP2 channel protein belongs to the superfamily of transient receptor potential(TRP) channels and is widely expressed in various tissues, including smooth muscle in digestive gut. Accumulating evidence has demonstrat...TRPP2 channel protein belongs to the superfamily of transient receptor potential(TRP) channels and is widely expressed in various tissues, including smooth muscle in digestive gut. Accumulating evidence has demonstrated that TRPP2 can mediate Ca^(2+) release from Ca^(2+) stores. However, the functional role of TRPP2 in gallbladder smooth muscle contraction still remains unclear. In this study, we used Ca^(2+) imaging and tension measurements to test agonist-induced intracellular Ca^(2+) concentration increase and smooth muscle contraction of guinea pig gallbladder, respectively. When TRPP2 protein was knocked down in gallbladder muscle strips from guinea pig, carbachol(CCh)-evoked Ca^(2+) release and extracellular Ca^(2+) influx were reduced significantly, and gallbladder contractions induced by endothelin 1 and cholecystokinin were suppressed markedly as well. CCh-induced gallbladder contraction was markedly suppressed by pretreatment with U73122, which inhibits phospholipase C to terminate inositol 1,4,5-trisphosphate receptor(IP3) production, and 2-aminoethoxydiphenyl borate(2APB), which inhibits IP3 recepor(IP3R) to abolish IP3R-mediated Ca^(2+) release. To confirm the role of Ca^(2+) release in CCh-induced gallbladder contraction, we used thapsigargin(TG)-to deplete Ca^(2+) stores via inhibiting sarco/endoplasmic reticulum Ca^(2+)-ATPase and eliminate the role of store-operated Ca^(2+) entry on the CCh-induced gallbladder contraction. Preincubation with 2 μmol L^(-1) TG significantly decreased the CCh-induced gallbladder contraction. In addition, pretreatments with U73122, 2APB or TG abolished the difference of the CCh-induced gallbladder contraction between TRPP2 knockdown and control groups. We conclude that TRPP2 mediates Ca^(2+) release from intracellular Ca^(2+) stores, and has an essential role in agonist-induced gallbladder muscle contraction.展开更多
基金supported,in part,by grants from the Program for New Century Excellent Talents in University(NECT-10-0098)the National Natural Scientific Foundation of China(Nos.81072161.81000769.81172139.and 81060183)+3 种基金Programs for Changjiang Scholars and Innovative Research Team in University(No. IRT1119)Innovative Research Team in Guangxi Natural Science Foundation (No.2011-18-5)Fund for Distinguished Young Scholars in Guangxi Natural Science Foundation(2012jjFA40005)Project of science and technology of Guangxi (1140003A-17)
文摘Objective:To develop a novel artificial antigen-presenting system for efficiently inducing melanoma-specific CD8+CD28+ cytotoxic T lymphocyte(CTL) responses.Methods:Cell-sized Dynabeads? M-450 Epoxy beads coated with H-2Kb:Ig-TRP2(181111K and anti-CD28 antibody were used as artificial antigen-presenting cells(aAPCs) lo induce melanoma-specific CD8*CD28’ CTL responses with the help of IL-2I and IL-I5.Dimer staining,proliferation,ELISPOT,and cytotoxicity experiments were conducted to evaluate the frequency and activity of induced CTLs.Results:Dimer staining demonstrated that the new artificial antigen-presenting system efficiently induced melanoma TRP2-specific CD8CD28' CTLs.Proliferation and ELISPOT assays indicated that the induced CTLs rapidly proliferate and produce increased IFN- y under the slimulalion of H-2K:Ig-TRP2-aAPCs,TL-15,and IL-21.In addition,cytoloxicily experiments showed lhat induced CTLs have specific killing activity of target cells.Conclusions:The new artificial antigen-presenting system including aAPCs plus IL-21 and IL-15 can induce a large number of antigen-specific CD8+CD28+ CTLs against the melanoma.Our study provides evidence for a novel adoptive immunotherapy against tumors.
基金support of National Key Research and Development Program of China(2021YFE0103100,China)National Natural Science Foundation of China of China(81925035,81673382,and 81521005,China)+3 种基金National Special Project for Significant New Drugs Development(2018ZX09711002-010-002,China)Shanghai SciTech Innovation Initiative(19431903100,18430740800,China)Shanghai Collaborative Innovation Group of Early Diagnosis and Precise Treatment of Hemangiomas and Vascular Malformations(SSMU-ZDCX20180701,China)Chinese Pharmaceutical Association-Yiling Pharm Joint Grants(CPAYLJ201901,China)for the support。
文摘An essential step for cancer vaccination is to break the immunosuppression and elicit a tumor-specific immunity.A major hurdle against cancer therapeutic vaccination is the insufficient immune stimulation of the cancer vaccines and lack of a safe and efficient adjuvant for human use.We discovered a novel cancer immunostimulant,trichosanthin(TCS),that is a clinically used protein drug in China,and developed a well-adaptable protein-engineering method for making recombinant protein vaccines by fusion of an antigenic peptide,TCS,and a cell-penetrating peptide(CPP),termed an"allin-one"vaccine,for transcutaneous cancer immunization.The TCS adjuvant effect on antigen presentation was investigated and the antitumor immunity of the vaccines was investigated using the different tumor models.The vaccines were prepared via a facile recombinant method.The vaccines induced the maturation of DCs that subsequently primed CD8^(+)T cells.The TCS-based immunostimulation was associated with the STING pathway.The general applicability of this genetic engineering strategy was demonstrated with various tumor antigens(i.e.,legumain and TRP2 antigenic peptides)and tumor models(i.e.,colon tumor and melanoma).These findings represent a useful protocol for developing cancer vaccines at low cost and time-saving,and demonstrates the adjuvant application of TCSdan old drug for a new application.
基金supported by Anhui Provincial Natural Science Foundation (1208085MH181, 1108085J11)National Natural Science Foundation of China (81371284)Young Prominent Investigator Supporting Program from Anhui Medical University and National Training Program of Innovation and Entrepreneurship for Undergraduates (201310366012)
文摘TRPP2 channel protein belongs to the superfamily of transient receptor potential(TRP) channels and is widely expressed in various tissues, including smooth muscle in digestive gut. Accumulating evidence has demonstrated that TRPP2 can mediate Ca^(2+) release from Ca^(2+) stores. However, the functional role of TRPP2 in gallbladder smooth muscle contraction still remains unclear. In this study, we used Ca^(2+) imaging and tension measurements to test agonist-induced intracellular Ca^(2+) concentration increase and smooth muscle contraction of guinea pig gallbladder, respectively. When TRPP2 protein was knocked down in gallbladder muscle strips from guinea pig, carbachol(CCh)-evoked Ca^(2+) release and extracellular Ca^(2+) influx were reduced significantly, and gallbladder contractions induced by endothelin 1 and cholecystokinin were suppressed markedly as well. CCh-induced gallbladder contraction was markedly suppressed by pretreatment with U73122, which inhibits phospholipase C to terminate inositol 1,4,5-trisphosphate receptor(IP3) production, and 2-aminoethoxydiphenyl borate(2APB), which inhibits IP3 recepor(IP3R) to abolish IP3R-mediated Ca^(2+) release. To confirm the role of Ca^(2+) release in CCh-induced gallbladder contraction, we used thapsigargin(TG)-to deplete Ca^(2+) stores via inhibiting sarco/endoplasmic reticulum Ca^(2+)-ATPase and eliminate the role of store-operated Ca^(2+) entry on the CCh-induced gallbladder contraction. Preincubation with 2 μmol L^(-1) TG significantly decreased the CCh-induced gallbladder contraction. In addition, pretreatments with U73122, 2APB or TG abolished the difference of the CCh-induced gallbladder contraction between TRPP2 knockdown and control groups. We conclude that TRPP2 mediates Ca^(2+) release from intracellular Ca^(2+) stores, and has an essential role in agonist-induced gallbladder muscle contraction.