Objective:To study the effect of estrogen on anovulatory dysfunctional uterine bleeding(ADUB).Methods:Primary endometrial epithelial cells of Hainan Lizu female was cultured and hydrolylic activity of gelalinase was d...Objective:To study the effect of estrogen on anovulatory dysfunctional uterine bleeding(ADUB).Methods:Primary endometrial epithelial cells of Hainan Lizu female was cultured and hydrolylic activity of gelalinase was determined by gelatin zymography analysis.Cellular mRNA and protein synthesis was blocked respectively to determine whether the increased expression of MMP-2/9 was induced by estrogen.The expression of VEGF was blocked by siRNA.After treatment with various factors.MMP-9,VEGF,total Erk and phosphorylated Erk expression in primary uterine epithelial cells was detected by Western blotting analysis.Cell MMP-2/9mRNA levels was measured by real-time RT-PCR.Results:The activity and expression of MMP2/9 was inereased in the endometrium of patients with ADUB.Estrogen could up-regulate the expression of VEGF and activate Erk 1/2-Elk1 signal path.After interference by siRNA,ERK1/2 pathway was blocked in cells,and the expression of MMP-2/9 was down-regulated.ERK1/2 specific blocker U0126 blocked ERK phosphorylation,and it could down-regulate the expression of MMP-2/9.Conclusions:The results showed that the estrogen can increase the expression of VEGF,and thus activate ERK1/2 pathway to induce MMP-2/9 expression.展开更多
Background Homocysteine(Hcy)is a risk factor for hypertension,although the mechanisms are poorly understood.Methods We first explored the relationship between Hcy levels and blood pressure(BP)by analyzing the clinical...Background Homocysteine(Hcy)is a risk factor for hypertension,although the mechanisms are poorly understood.Methods We first explored the relationship between Hcy levels and blood pressure(BP)by analyzing the clinical data of primary hypertensive patients admitted to our hospital.Secondly,we explored a rat model to study the effect of Hcy on blood pressure and the role of H2S.An hyperhomocysteinemia(HHcy)rat model was induced to explore the effect of Hcy on blood pressure and the possible mechanism.We carried out tissue histology,extraction and examination of RNA and protein.Finally,we conducted cell experiments to determine a likely mechanism through renin-angiotensin-aldosterone system(RAAS)and extracellular signal-regulated kinase 1/2(ERK1/2)signaling pathway.Results In primary hypertensive inpatients with HHcy,blood pressure was significantly higher as compared with inpatient counterparts lacking HHcy.In the rat model,blood pressure of the Wistar rats was significantly increased with increases in serum Hcy levels and decreased after folate treatment.Angiotensin converting enzyme 1(ACE1)expression in the Wistar Hcy group was enhanced comparing to controls,but was decreased in the Wistar folate group.Angiotensin II receptor type 1(AGTR1)levels in the kidney tissue increased in the Wistar folate group.Both serum H2S and kidney cystathionineγ-lyase decreased with elevated levels of serum Hcy.In vitro,increased concentrations and treatment times for Hcy were associated with increased expression of collagen type 1 and AGTR1.This dose and time dependent response was also observed for p-STAT3 and p-ERK1/2 expression.Conclusion Endogenous H2S might mediate the process of altered blood pressure in response to changes in serum Hcy levels,in a process that is partly dependent on activated RAAS and ERK1/2-STAT3 signaling pathway.展开更多
Objectives In this work,we explore the effect of atorvastatin on myocardial apoptosis and caspase-8 acti- vation after coronary microembolization(CME) in rats. Methods Fifty rats were randomly divided into five groups...Objectives In this work,we explore the effect of atorvastatin on myocardial apoptosis and caspase-8 acti- vation after coronary microembolization(CME) in rats. Methods Fifty rats were randomly divided into five groups; the coronary microembolization(CME) group,the sham-operated (sham) control group,the gastric lavage control group, the atorvastatin lavage group,and the caspasse-8 inhibitor (N-acetyl-Ile-Glu-Thr-Asp-CHO,abbreviated as CHO) group,with 10 rats for each group.A microembolization ball was injected through the left ventricle for constructing the CME model.Animals in the sham control group were given an injection of physiological saline instead of the microembolization ball.Seven days before the operation,the atorvastatin group underwent gastric lavage with 20 mg/kg of atorvastatin once a day.Gastric lavage control animals underwent gastric lavage with an equivalent dose of physiological saline instead of the atorvastatin.Animals in the CHO group were given an intraperitoneal injection of 10 mg/kg of CHO 30 min before the operation.Six hours after the operation,cardiac ultrasonic detection was conducted on each group to measure the cardiac function indexes.TUNEL(Terminal-deoxynucleoitidyl transferase mediated dUTP nick end labeling) assays were used to measure myocardial apoptosis,and western blots were used to quantify the expression levels of activated caspase-3 and -8.Results(1) The echocardiographic parameters showed that,compared to the sham control animals,the left ventricular ejection fraction(LVEF) of the CME group was significantly decreased(P【0.05).In addition, cardiac sonography revealed a decrease in the left ventricular shortening fraction(FS) and cardiac output(CO), but an increase in the left ventricular end-diastolic dimension (LVEDd).Compared to the CME group,the atorvastatin and CHO groups exhibited significantly improved cardiac function (P【0.05).(2) When compared with the sham control,the myocardical apoptotic rate of the CME group,as well as the levels of activated caspase-3 and-8,increased significantly (P【0.05).The myocardial apoptotic rate,as well as the levels of activated caspase-3 and caspase-8 in the atorvastatin and CHO groups,decreased significandy(P【0.05) in comparison to the CME group.Conclusions The atorvastatin pretreatment clearly suppressed post-CME myocardial apoptosis and improved cardiac function.The most likely mechanism for these effects is the blockade of the myocardial death receptor -mediated apoptosis pathway.展开更多
Background This study aimed to determine the effects of tumor necrosis factor(TNF-a) on endothelial cytoskeleton morphology and permeability,and to detect the underlying signaling mechanisms involved in these response...Background This study aimed to determine the effects of tumor necrosis factor(TNF-a) on endothelial cytoskeleton morphology and permeability,and to detect the underlying signaling mechanisms involved in these responses. Methods Cultured endothelial cells(ECs) were exposed to TNF-a,and EC cytoskeletal changes were evaluated by observing fluorescence of F-actin following ligation with labeled antibodies.Endothelial permeability was detected by measuring the flux of HRP-albumin across the EC monolayers.To explore the signaling pathways behind TNF-a-induced EC alteration, ECs were treated with either the RhoGTPase inhibitor Y27632 or the MAPK inhibitors PD98059 and SB203580 before TNF-a administration.To further elucidate possible involvement of the RhoA and ERK pathways in TNF-induced EC changes,retrovirus-carried recombinant dominant-negative forms and constitutive-activative forms of RhoA,namely T19NRhoA and Q63LRhoA,were pre-infect-ed into ECs prior to TNF-a exposure.Results TNF-a induced F-actin cytoskeleton rearrangement,as well as EC hyperpermeability in a dose and time-dependent manner.The effects were attenuated in cells pretreated with Y27632 or PD98059,respectively.EC pre-infection with T19NRhoA also alleviated the effects of TNF-a.Furthermore,retrovirus-mediated administration of activated forms of Q63LRhoA alone induced rearrangement of F-actin and hyperpermeability as well as induced the activation of pERK.Conclusions These results indicate that RhoA-ERK/MAPK signal pathway play important roles in the mediation of TNF-a induced EC barrier dysfunction associated with morphological changes of the Factin.展开更多
The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administratio...The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administration of T-AⅢ,the nude mice exhibited an induction of CYP2B10,MDR1,and CYP3A11 expression in the liver tissues.In the ICR mice,the expression levels of CYP2B10 and MDR1 increased after a three-day T-AⅢ administration.The in vitro assessments with HepG2 cells revealed that T-AⅢ induced the expression of CYP2B6,MDR1,and CYP3A4,along with constitutive androstane receptor(CAR)activation.Treatment with CAR siRNA reversed the T-AⅢ-induced increases in CYP2B6 and CYP3A4 expression.Furthermore,other CAR target genes also showed a significant increase in the expression.The up-regulation of murine CAR was observed in the liver tissues of both nude and ICR mice.Subsequent findings demonstrated that T-AⅢ activated CAR by inhibiting ERK1/2 phosphorylation,with this effect being partially reversed by the ERK activator t-BHQ.Inhibition of the ERK1/2 signaling pathway was also observed in vivo.Additionally,T-AⅢ inhibited the phosphorylation of EGFR at Tyr1173 and Tyr845,and suppressed EGF-induced phosphorylation of EGFR,ERK,and CAR.In the nude mice,T-AⅢ also inhibited EGFR phosphorylation.These results collectively indicate that T-AⅢ is a novel CAR activator through inhibition of the EGFR pathway.展开更多
Pulmonary arterial hypertension (PAH) is a serious disease which is characterized by increased vascular resistance and pressure. We have previously hypothesized that panax notoginseng saponins (PNS) might attenuate pu...Pulmonary arterial hypertension (PAH) is a serious disease which is characterized by increased vascular resistance and pressure. We have previously hypothesized that panax notoginseng saponins (PNS) might attenuate pulmonary vasoconstriction under hypoxia and hypercapnia condition. This study aims to investigate the effect of notoginsenoside R<sub>g1</sub>, a main ingredient of PNS, with various concentrations (8, 40, 100 mg/L, respectively) on extracellular signal regulated kinase (ERK1/2) signaling pathway in pulmonary arterial smooth muscle cells (PASMCs). In addition, PASMCs were randomly divided into six groups: SD rat under normoxic condition as control group (N group), hypoxia hypercapnia group (H group), DMSO control group (HD group), R<sub>g1</sub>-treatment groups (R<sub>gL</sub>R<sub>gM</sub> and R<sub>gH</sub> group). Western-blot and RT-PCR were used to test the expression of p-ERK protein and the expression of ERK1 mRNA and ERK2 mRNA. This study provided the evidence that the expression of p-ERK protein and the expression of ERK1 mRNA and ERK2 mRNA in HD group and H group were obviously higher than that in N group (P < 0.01), Whereas the level of ERK1/2 mRNA in R<sub>g1</sub>-treatment groups was significantly lower than that in HD group and H group (P < 0.01), and the proper concentration of R<sub>g1</sub> is 40 mg/L. These results suggested that notoginsenoside R<sub>g1</sub> can attenuate pulmonary vasoconstriction which may lead to HHPV through reducing the expression of ERK1/2.展开更多
Objective: To explore the therapeutic effect and underlying mechanism of Shenqi Zhilong Decoction on mice with membranous nephropathy (MN). Methods:Mice with MN was established by injecting cationic bovine serum album...Objective: To explore the therapeutic effect and underlying mechanism of Shenqi Zhilong Decoction on mice with membranous nephropathy (MN). Methods:Mice with MN was established by injecting cationic bovine serum albumin (c-BSA) into tail vein for several times. model mice were randomly divided into MN group (equal amount of distilled water), Shenqi Zhilong Decoction low dose group (12 g crude drug/kg), Shenqi Zhilong Decoction high dose group (24 g crude drug/kg), and Tripterygium wilfordii polyglycoside tablet group (14 mg/ kg). Another 10 un-treatment mice were taken as control group (equal amount of distilled water). The drug was administered orally once a day for 4 weeks. After the last administration, 24 hours urine was collected to determine the urinary protein content;blood from inner canthus was collected to measure the changes of kidney function, liver function, blood lipid and levels of IL-6, IL-4 and TNF-α in serum in each group;HE staining was used to observe the pathological changes of kidney. Immunohistochemical staining was used to observe the expression of IgG in kidney. The protein expression of ERK1/2 and cPLA2 in renal tissues was determined by Western-blot method. The gene expression of Neph1, Nephrin and Podocin mRNA in kidney tissues were detected by RT-PCR. Results: Compared with model group, Shenqi Zhilong decoction at low-dose and high-dose could significantly reduce the value of urine protein in MN mice;Decreased TC and TG levels (P<0.05 or P<0.01);Increased the levels of ALB and TP in liver function (P<0.05 or P<0.01);has no significant effects on the levels of CRE, UREA and UA in renal function (P>0.05). Decreased the contents of IL-6, IL-4 and TNF-α in serum (P<0.05 or P<0.01);Significantly down-regulated the protein expression levels of p-ERK1/2 and p-cPLA2 in kidney tissues of MN mice (P<0.05 or P<0.01);Significantly increased the expression levels of NephP1, Nephrin and Podocin mRNA in renal tissues (P<0.01). Conclusion: Shenqi Zhulong Decoction has a good therapeutic effect on MN mice, and the mechanism of action is related to regulate the expression of related genes of Nephrin-Podocin-Neph1 receptor complex for protecting the glomerular filtration barrier, and inhibite the activation of ERK/cPLA2 pathway for relieving damage of GEC and reduceing secretion of pro-inflammatory cytokines.展开更多
Cardiac fibrosis is a cause of morbidity and mortality in people with heart disease.Anti-fibrosis treatment is a significant therapy for heart disease,but there is still no thorough understanding of fibrotic mechanism...Cardiac fibrosis is a cause of morbidity and mortality in people with heart disease.Anti-fibrosis treatment is a significant therapy for heart disease,but there is still no thorough understanding of fibrotic mechanisms.This study was carried out to ascertain the functions of cytokine receptor-like factor 1(CRLF1)in cardiac fibrosis and clarify its regulatory mechanisms.We found that CRLF1 was expressed predominantly in cardiac fibroblasts.Its expression was up-regulated not only in a mouse heart fibrotic model induced by myocardial infarction,but also in mouse and human cardiac fibroblasts provoked by transforming growth factor-β1(TGF-β1).Gain-and loss-of-function experiments of CRLF1 were carried out in neonatal mice cardiac fibroblasts(NMCFs)with or without TGF-β1 stimulation.CRLF1 overexpression increased cell viability,collagen production,cell proliferation capacity,and myofibroblast transformation of NMCFs with or without TGF-β1 stimulation,while silencing of CRLF1 had the opposite effects.An inhibitor of the extracellular signal-regulated kinase 1/2(ERK1/2)signaling pathway and different inhibitors of TGF-β1 signaling cascades,comprising mothers against decapentaplegic homolog(SMAD)-dependent and SMAD-independent pathways,were applied to investigate the mechanisms involved.CRLF1 exerted its functions by activating the ERK1/2 signaling pathway.Furthermore,the SMAD-dependent pathway,not the SMAD-independent pathway,was responsible for CRLF1 up-regulation in NMCFs treated with TGF-β1.In summary,activation of the TGF-β1/SMAD signaling pathway in cardiac fibrosis increased CRLF1 expression.CRLF1 then aggravated cardiac fibrosis by activating the ERK1/2 signaling pathway.CRLF1 could become a novel potential target for intervention and remedy of cardiac fibrosis.展开更多
Claudin 14 has been shown to promote nerve repair and regeneration in the early stages of Wallerian degeneration (0-4 days) in rats with sciatic nerve injury, but the mechanism underlying this process remains poorly...Claudin 14 has been shown to promote nerve repair and regeneration in the early stages of Wallerian degeneration (0-4 days) in rats with sciatic nerve injury, but the mechanism underlying this process remains poorly understood. This study reported the effects of claudin 14 on nerve degeneration and regeneration during early Wallerian degeneration. Claudin 14 expression was up-regulated in sciatic nerve 4 days after Wallerian degeneration. The altered expression of claudin 14 in Schwann cells resulted in expression changes of cytokines in vitro. Expression of claudin 14 affected c-Jun, but not Akt anal ERK1/2 patl^ways, l^urther studies reve^ed that enhanced expression of claudin 14 could promote Schwann cell proliferation and migration. Silencing of claudin 14 expression resulted in Schwann cell apoptosis and reduction in Schwann cell proliferation. Our data revealed the role of claudin 14 in early Wallerian degeneration, which may provide new insights into the molecular mechanisms of Wallerian degeneration.展开更多
Transient receptor potential ankyrin 1 (TRPA1) is a key player in pain and neurogenic inflammation, and is localized in nociceptive primary sensory dorsal root ganglion (DRG) neurons. TRPA1 plays a major role in t...Transient receptor potential ankyrin 1 (TRPA1) is a key player in pain and neurogenic inflammation, and is localized in nociceptive primary sensory dorsal root ganglion (DRG) neurons. TRPA1 plays a major role in the transmission of nociceptive sensory signals. The generation of neurogenic inflammation appears to involve TRPAl-evoked release of calcitonin gene-related peptide (CGRP). However, it remains unknown whether TRPA1 or CGRP expression is affected by TRPA 1 activation. Thus, in this study, we examined TRPA 1 and CGRP expression in DRG neurons in vitro after treatment with the TRPA1 activator tbrmaldehyde or the TRPA1 blocker menthol. In addition, we examined the role of extracellular signal-regulated protein kinase 1/2 (ERK1/2) in this process. DRG neurons in culture were exposed to formaldehyde, menthol, the ERK1/2 inhibitor PD98059 + formaldehyde, or PD98059 + menthol. After treatment, real-time polymerase chain reaction, western blot assay and double immunofluorescence labeling were performed to evaluate TRPA1 and CGRP expression in DRG neurons. Formaldehyde elevated mRNA and protein levels of TRPA 1 and CGRP, as well as the proportion of TRPA1- and CGRP-positive neurons. In contrast, menthol reduced TRPA1 and CGRP expression. Furthermore, the effects of lbrmaldehyde, but not menthol, on CGRP expression were blocked by pretreatment with PD98059. PD98059 pretreatment did not affect TRPA1 expression in the presence of formaldehyde or menthol.展开更多
Background The Ras/Raf/ERK1/2 signaling pathway controls many cellular responses such as cell proliferation, migration, differentiation, and death. In the nervous system, emerging evidence also points to a death-promo...Background The Ras/Raf/ERK1/2 signaling pathway controls many cellular responses such as cell proliferation, migration, differentiation, and death. In the nervous system, emerging evidence also points to a death-promoting role for ERK1/2 in both in vitro and in vivo models of neuronal death. To further investigate how Ras/Raf/ERK1/2 up-regulation may lead to the development of spinal cord injury, we developed a cellular model of Raf/ERK up-regulation by over- expressing c-Raf in cultured spinal cord neurons (SCNs) and dorsal root ganglions (DRGs).展开更多
SIRT6 belongs to class III sirtuin family with NAD+-dependent histone deacetylase activities and controls multiple processes including aging,metabolism and inflammation.In recent years,increasing studies showed tumor ...SIRT6 belongs to class III sirtuin family with NAD+-dependent histone deacetylase activities and controls multiple processes including aging,metabolism and inflammation.In recent years,increasing studies showed tumor suppressor role of SIRT6 in HCC development.We established a two-stage DEN followed CC14 induced liver carcinogenesis in the hepatic-specific SIRT6 HKO mice models and found that hepatic S1RT6 deficit significantly promotes liver injury and liver cancer through inhibition of the ERK1/2 pathway.SIRT6 was compensatory up-regulated in mice tumor tissues and human HCC cells and overexpressed SIRT6 inhibits tumor growth both in vitro and in vivo.Taken together,we provide a useful mouse model for delineating the molecular pathways involved in chronic liver diseases and primary liver cancer and suggest that SIRT6 can be a promising target for HCC therapies.展开更多
基金supported by Natural Science Foundation of Hainan Province(No.812148)
文摘Objective:To study the effect of estrogen on anovulatory dysfunctional uterine bleeding(ADUB).Methods:Primary endometrial epithelial cells of Hainan Lizu female was cultured and hydrolylic activity of gelalinase was determined by gelatin zymography analysis.Cellular mRNA and protein synthesis was blocked respectively to determine whether the increased expression of MMP-2/9 was induced by estrogen.The expression of VEGF was blocked by siRNA.After treatment with various factors.MMP-9,VEGF,total Erk and phosphorylated Erk expression in primary uterine epithelial cells was detected by Western blotting analysis.Cell MMP-2/9mRNA levels was measured by real-time RT-PCR.Results:The activity and expression of MMP2/9 was inereased in the endometrium of patients with ADUB.Estrogen could up-regulate the expression of VEGF and activate Erk 1/2-Elk1 signal path.After interference by siRNA,ERK1/2 pathway was blocked in cells,and the expression of MMP-2/9 was down-regulated.ERK1/2 specific blocker U0126 blocked ERK phosphorylation,and it could down-regulate the expression of MMP-2/9.Conclusions:The results showed that the estrogen can increase the expression of VEGF,and thus activate ERK1/2 pathway to induce MMP-2/9 expression.
基金supported by the Beijing Natural Science Foundation Program(Grant number:5102040)the Open Foundation of the Beijing Key Laboratory of Hypertension Research(Grant number:2015GXYB01)
文摘Background Homocysteine(Hcy)is a risk factor for hypertension,although the mechanisms are poorly understood.Methods We first explored the relationship between Hcy levels and blood pressure(BP)by analyzing the clinical data of primary hypertensive patients admitted to our hospital.Secondly,we explored a rat model to study the effect of Hcy on blood pressure and the role of H2S.An hyperhomocysteinemia(HHcy)rat model was induced to explore the effect of Hcy on blood pressure and the possible mechanism.We carried out tissue histology,extraction and examination of RNA and protein.Finally,we conducted cell experiments to determine a likely mechanism through renin-angiotensin-aldosterone system(RAAS)and extracellular signal-regulated kinase 1/2(ERK1/2)signaling pathway.Results In primary hypertensive inpatients with HHcy,blood pressure was significantly higher as compared with inpatient counterparts lacking HHcy.In the rat model,blood pressure of the Wistar rats was significantly increased with increases in serum Hcy levels and decreased after folate treatment.Angiotensin converting enzyme 1(ACE1)expression in the Wistar Hcy group was enhanced comparing to controls,but was decreased in the Wistar folate group.Angiotensin II receptor type 1(AGTR1)levels in the kidney tissue increased in the Wistar folate group.Both serum H2S and kidney cystathionineγ-lyase decreased with elevated levels of serum Hcy.In vitro,increased concentrations and treatment times for Hcy were associated with increased expression of collagen type 1 and AGTR1.This dose and time dependent response was also observed for p-STAT3 and p-ERK1/2 expression.Conclusion Endogenous H2S might mediate the process of altered blood pressure in response to changes in serum Hcy levels,in a process that is partly dependent on activated RAAS and ERK1/2-STAT3 signaling pathway.
文摘Objectives In this work,we explore the effect of atorvastatin on myocardial apoptosis and caspase-8 acti- vation after coronary microembolization(CME) in rats. Methods Fifty rats were randomly divided into five groups; the coronary microembolization(CME) group,the sham-operated (sham) control group,the gastric lavage control group, the atorvastatin lavage group,and the caspasse-8 inhibitor (N-acetyl-Ile-Glu-Thr-Asp-CHO,abbreviated as CHO) group,with 10 rats for each group.A microembolization ball was injected through the left ventricle for constructing the CME model.Animals in the sham control group were given an injection of physiological saline instead of the microembolization ball.Seven days before the operation,the atorvastatin group underwent gastric lavage with 20 mg/kg of atorvastatin once a day.Gastric lavage control animals underwent gastric lavage with an equivalent dose of physiological saline instead of the atorvastatin.Animals in the CHO group were given an intraperitoneal injection of 10 mg/kg of CHO 30 min before the operation.Six hours after the operation,cardiac ultrasonic detection was conducted on each group to measure the cardiac function indexes.TUNEL(Terminal-deoxynucleoitidyl transferase mediated dUTP nick end labeling) assays were used to measure myocardial apoptosis,and western blots were used to quantify the expression levels of activated caspase-3 and -8.Results(1) The echocardiographic parameters showed that,compared to the sham control animals,the left ventricular ejection fraction(LVEF) of the CME group was significantly decreased(P【0.05).In addition, cardiac sonography revealed a decrease in the left ventricular shortening fraction(FS) and cardiac output(CO), but an increase in the left ventricular end-diastolic dimension (LVEDd).Compared to the CME group,the atorvastatin and CHO groups exhibited significantly improved cardiac function (P【0.05).(2) When compared with the sham control,the myocardical apoptotic rate of the CME group,as well as the levels of activated caspase-3 and-8,increased significantly (P【0.05).The myocardial apoptotic rate,as well as the levels of activated caspase-3 and caspase-8 in the atorvastatin and CHO groups,decreased significandy(P【0.05) in comparison to the CME group.Conclusions The atorvastatin pretreatment clearly suppressed post-CME myocardial apoptosis and improved cardiac function.The most likely mechanism for these effects is the blockade of the myocardial death receptor -mediated apoptosis pathway.
文摘Background This study aimed to determine the effects of tumor necrosis factor(TNF-a) on endothelial cytoskeleton morphology and permeability,and to detect the underlying signaling mechanisms involved in these responses. Methods Cultured endothelial cells(ECs) were exposed to TNF-a,and EC cytoskeletal changes were evaluated by observing fluorescence of F-actin following ligation with labeled antibodies.Endothelial permeability was detected by measuring the flux of HRP-albumin across the EC monolayers.To explore the signaling pathways behind TNF-a-induced EC alteration, ECs were treated with either the RhoGTPase inhibitor Y27632 or the MAPK inhibitors PD98059 and SB203580 before TNF-a administration.To further elucidate possible involvement of the RhoA and ERK pathways in TNF-induced EC changes,retrovirus-carried recombinant dominant-negative forms and constitutive-activative forms of RhoA,namely T19NRhoA and Q63LRhoA,were pre-infect-ed into ECs prior to TNF-a exposure.Results TNF-a induced F-actin cytoskeleton rearrangement,as well as EC hyperpermeability in a dose and time-dependent manner.The effects were attenuated in cells pretreated with Y27632 or PD98059,respectively.EC pre-infection with T19NRhoA also alleviated the effects of TNF-a.Furthermore,retrovirus-mediated administration of activated forms of Q63LRhoA alone induced rearrangement of F-actin and hyperpermeability as well as induced the activation of pERK.Conclusions These results indicate that RhoA-ERK/MAPK signal pathway play important roles in the mediation of TNF-a induced EC barrier dysfunction associated with morphological changes of the Factin.
基金supported by the National Natural Science Foundation of China(Grant Nos.82073934,81872937,and 81673513).
文摘The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administration of T-AⅢ,the nude mice exhibited an induction of CYP2B10,MDR1,and CYP3A11 expression in the liver tissues.In the ICR mice,the expression levels of CYP2B10 and MDR1 increased after a three-day T-AⅢ administration.The in vitro assessments with HepG2 cells revealed that T-AⅢ induced the expression of CYP2B6,MDR1,and CYP3A4,along with constitutive androstane receptor(CAR)activation.Treatment with CAR siRNA reversed the T-AⅢ-induced increases in CYP2B6 and CYP3A4 expression.Furthermore,other CAR target genes also showed a significant increase in the expression.The up-regulation of murine CAR was observed in the liver tissues of both nude and ICR mice.Subsequent findings demonstrated that T-AⅢ activated CAR by inhibiting ERK1/2 phosphorylation,with this effect being partially reversed by the ERK activator t-BHQ.Inhibition of the ERK1/2 signaling pathway was also observed in vivo.Additionally,T-AⅢ inhibited the phosphorylation of EGFR at Tyr1173 and Tyr845,and suppressed EGF-induced phosphorylation of EGFR,ERK,and CAR.In the nude mice,T-AⅢ also inhibited EGFR phosphorylation.These results collectively indicate that T-AⅢ is a novel CAR activator through inhibition of the EGFR pathway.
文摘Pulmonary arterial hypertension (PAH) is a serious disease which is characterized by increased vascular resistance and pressure. We have previously hypothesized that panax notoginseng saponins (PNS) might attenuate pulmonary vasoconstriction under hypoxia and hypercapnia condition. This study aims to investigate the effect of notoginsenoside R<sub>g1</sub>, a main ingredient of PNS, with various concentrations (8, 40, 100 mg/L, respectively) on extracellular signal regulated kinase (ERK1/2) signaling pathway in pulmonary arterial smooth muscle cells (PASMCs). In addition, PASMCs were randomly divided into six groups: SD rat under normoxic condition as control group (N group), hypoxia hypercapnia group (H group), DMSO control group (HD group), R<sub>g1</sub>-treatment groups (R<sub>gL</sub>R<sub>gM</sub> and R<sub>gH</sub> group). Western-blot and RT-PCR were used to test the expression of p-ERK protein and the expression of ERK1 mRNA and ERK2 mRNA. This study provided the evidence that the expression of p-ERK protein and the expression of ERK1 mRNA and ERK2 mRNA in HD group and H group were obviously higher than that in N group (P < 0.01), Whereas the level of ERK1/2 mRNA in R<sub>g1</sub>-treatment groups was significantly lower than that in HD group and H group (P < 0.01), and the proper concentration of R<sub>g1</sub> is 40 mg/L. These results suggested that notoginsenoside R<sub>g1</sub> can attenuate pulmonary vasoconstriction which may lead to HHPV through reducing the expression of ERK1/2.
基金Fund Project:Heilongjiang Natural Science Foundation Project(No.LH2020H104)Heilongjiang Postdoctoral Fund(No.LBH-Z20033)。
文摘Objective: To explore the therapeutic effect and underlying mechanism of Shenqi Zhilong Decoction on mice with membranous nephropathy (MN). Methods:Mice with MN was established by injecting cationic bovine serum albumin (c-BSA) into tail vein for several times. model mice were randomly divided into MN group (equal amount of distilled water), Shenqi Zhilong Decoction low dose group (12 g crude drug/kg), Shenqi Zhilong Decoction high dose group (24 g crude drug/kg), and Tripterygium wilfordii polyglycoside tablet group (14 mg/ kg). Another 10 un-treatment mice were taken as control group (equal amount of distilled water). The drug was administered orally once a day for 4 weeks. After the last administration, 24 hours urine was collected to determine the urinary protein content;blood from inner canthus was collected to measure the changes of kidney function, liver function, blood lipid and levels of IL-6, IL-4 and TNF-α in serum in each group;HE staining was used to observe the pathological changes of kidney. Immunohistochemical staining was used to observe the expression of IgG in kidney. The protein expression of ERK1/2 and cPLA2 in renal tissues was determined by Western-blot method. The gene expression of Neph1, Nephrin and Podocin mRNA in kidney tissues were detected by RT-PCR. Results: Compared with model group, Shenqi Zhilong decoction at low-dose and high-dose could significantly reduce the value of urine protein in MN mice;Decreased TC and TG levels (P<0.05 or P<0.01);Increased the levels of ALB and TP in liver function (P<0.05 or P<0.01);has no significant effects on the levels of CRE, UREA and UA in renal function (P>0.05). Decreased the contents of IL-6, IL-4 and TNF-α in serum (P<0.05 or P<0.01);Significantly down-regulated the protein expression levels of p-ERK1/2 and p-cPLA2 in kidney tissues of MN mice (P<0.05 or P<0.01);Significantly increased the expression levels of NephP1, Nephrin and Podocin mRNA in renal tissues (P<0.01). Conclusion: Shenqi Zhulong Decoction has a good therapeutic effect on MN mice, and the mechanism of action is related to regulate the expression of related genes of Nephrin-Podocin-Neph1 receptor complex for protecting the glomerular filtration barrier, and inhibite the activation of ERK/cPLA2 pathway for relieving damage of GEC and reduceing secretion of pro-inflammatory cytokines.
基金supported by the National Key Research and Development Project of China(No.2018YFA0800404)the National Natural Science Foundation of China(Nos.82100255 and 81970736)the China Postdoctoral Science Foundation(Nos.2021M691459 and 2022T150299).
文摘Cardiac fibrosis is a cause of morbidity and mortality in people with heart disease.Anti-fibrosis treatment is a significant therapy for heart disease,but there is still no thorough understanding of fibrotic mechanisms.This study was carried out to ascertain the functions of cytokine receptor-like factor 1(CRLF1)in cardiac fibrosis and clarify its regulatory mechanisms.We found that CRLF1 was expressed predominantly in cardiac fibroblasts.Its expression was up-regulated not only in a mouse heart fibrotic model induced by myocardial infarction,but also in mouse and human cardiac fibroblasts provoked by transforming growth factor-β1(TGF-β1).Gain-and loss-of-function experiments of CRLF1 were carried out in neonatal mice cardiac fibroblasts(NMCFs)with or without TGF-β1 stimulation.CRLF1 overexpression increased cell viability,collagen production,cell proliferation capacity,and myofibroblast transformation of NMCFs with or without TGF-β1 stimulation,while silencing of CRLF1 had the opposite effects.An inhibitor of the extracellular signal-regulated kinase 1/2(ERK1/2)signaling pathway and different inhibitors of TGF-β1 signaling cascades,comprising mothers against decapentaplegic homolog(SMAD)-dependent and SMAD-independent pathways,were applied to investigate the mechanisms involved.CRLF1 exerted its functions by activating the ERK1/2 signaling pathway.Furthermore,the SMAD-dependent pathway,not the SMAD-independent pathway,was responsible for CRLF1 up-regulation in NMCFs treated with TGF-β1.In summary,activation of the TGF-β1/SMAD signaling pathway in cardiac fibrosis increased CRLF1 expression.CRLF1 then aggravated cardiac fibrosis by activating the ERK1/2 signaling pathway.CRLF1 could become a novel potential target for intervention and remedy of cardiac fibrosis.
基金supported by grants from the National Natural Science Foundation of China,Grant No.81370982,31170946Key Program,Grant No.81130080+1 种基金the Scientific Research Foundation for Returned Scholars,Ministry of Education of Chinathe Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Claudin 14 has been shown to promote nerve repair and regeneration in the early stages of Wallerian degeneration (0-4 days) in rats with sciatic nerve injury, but the mechanism underlying this process remains poorly understood. This study reported the effects of claudin 14 on nerve degeneration and regeneration during early Wallerian degeneration. Claudin 14 expression was up-regulated in sciatic nerve 4 days after Wallerian degeneration. The altered expression of claudin 14 in Schwann cells resulted in expression changes of cytokines in vitro. Expression of claudin 14 affected c-Jun, but not Akt anal ERK1/2 patl^ways, l^urther studies reve^ed that enhanced expression of claudin 14 could promote Schwann cell proliferation and migration. Silencing of claudin 14 expression resulted in Schwann cell apoptosis and reduction in Schwann cell proliferation. Our data revealed the role of claudin 14 in early Wallerian degeneration, which may provide new insights into the molecular mechanisms of Wallerian degeneration.
基金supported by the National Natural Science Foundation of China,No.81501935(to HL)the Natural Science Foundation of Shandong Province of China,No.ZR2014HQ065(to HL)
文摘Transient receptor potential ankyrin 1 (TRPA1) is a key player in pain and neurogenic inflammation, and is localized in nociceptive primary sensory dorsal root ganglion (DRG) neurons. TRPA1 plays a major role in the transmission of nociceptive sensory signals. The generation of neurogenic inflammation appears to involve TRPAl-evoked release of calcitonin gene-related peptide (CGRP). However, it remains unknown whether TRPA1 or CGRP expression is affected by TRPA 1 activation. Thus, in this study, we examined TRPA 1 and CGRP expression in DRG neurons in vitro after treatment with the TRPA1 activator tbrmaldehyde or the TRPA1 blocker menthol. In addition, we examined the role of extracellular signal-regulated protein kinase 1/2 (ERK1/2) in this process. DRG neurons in culture were exposed to formaldehyde, menthol, the ERK1/2 inhibitor PD98059 + formaldehyde, or PD98059 + menthol. After treatment, real-time polymerase chain reaction, western blot assay and double immunofluorescence labeling were performed to evaluate TRPA1 and CGRP expression in DRG neurons. Formaldehyde elevated mRNA and protein levels of TRPA 1 and CGRP, as well as the proportion of TRPA1- and CGRP-positive neurons. In contrast, menthol reduced TRPA1 and CGRP expression. Furthermore, the effects of lbrmaldehyde, but not menthol, on CGRP expression were blocked by pretreatment with PD98059. PD98059 pretreatment did not affect TRPA1 expression in the presence of formaldehyde or menthol.
文摘Background The Ras/Raf/ERK1/2 signaling pathway controls many cellular responses such as cell proliferation, migration, differentiation, and death. In the nervous system, emerging evidence also points to a death-promoting role for ERK1/2 in both in vitro and in vivo models of neuronal death. To further investigate how Ras/Raf/ERK1/2 up-regulation may lead to the development of spinal cord injury, we developed a cellular model of Raf/ERK up-regulation by over- expressing c-Raf in cultured spinal cord neurons (SCNs) and dorsal root ganglions (DRGs).
基金This study was supported grants from the National Natural Science Foundation of China(No.81902803,81972233)the Overseas Young Talents Project of China,"Innovative and Entrepreneurial Team"(No.(2018)2015)+2 种基金Science and Technology Grant(No.BE2019758)the Natural Science Foundation(No.BK20190657)of Jiangsu Province,Southeast University-Nanjing Medical University Cooperative Research Project(No.2242018K3DN33)Fund of Nanjing Medical University and the China Scholarship Council(No.201906090247).
文摘SIRT6 belongs to class III sirtuin family with NAD+-dependent histone deacetylase activities and controls multiple processes including aging,metabolism and inflammation.In recent years,increasing studies showed tumor suppressor role of SIRT6 in HCC development.We established a two-stage DEN followed CC14 induced liver carcinogenesis in the hepatic-specific SIRT6 HKO mice models and found that hepatic S1RT6 deficit significantly promotes liver injury and liver cancer through inhibition of the ERK1/2 pathway.SIRT6 was compensatory up-regulated in mice tumor tissues and human HCC cells and overexpressed SIRT6 inhibits tumor growth both in vitro and in vivo.Taken together,we provide a useful mouse model for delineating the molecular pathways involved in chronic liver diseases and primary liver cancer and suggest that SIRT6 can be a promising target for HCC therapies.