TS-1/SiO2 catalyst for the epoxidation of propylene with hydrogen peroxide in a fixed-bed reactor has been investigated. The catalyst activity decreases gradually with the online reaction time, but the selectivity of ...TS-1/SiO2 catalyst for the epoxidation of propylene with hydrogen peroxide in a fixed-bed reactor has been investigated. The catalyst activity decreases gradually with the online reaction time, but the selectivity of propylene epoxide is kept at about 93%. The fresh, deactivated and regenerated catalysts were characterized with X-ray diffraction, Fourier transform infrared spectro- scopy, ultra-violet-visible diffuse reflectance, Brunner- Emmett-TeUer method and thermogravimetric analysis, and the deactivated catalyst was regenerated with H2O2/ methanol solution. Compared with the fresh catalyst, both the framework structure and the content of titanium in the framework of the deactivated and regenerated TS-1/SiO2 catalysts were not changed. The major reason of the catalyst deactivation was the blockage of the channels of the catalyst by bulky organic by-products, which covered the active centers of titanium in TS-1. The deposited materials on the deactivated TS-1/SiO2 catalyst could be removed by treatment with hydrogen peroxide/methanol solution or pure methanol; the higher the treatment temperature and the higher the concentration of H2O2 in methanol, the higher the extent of the regeneration. The regeneration treatment did not influence the product selectivity in the propylene epoxidation.展开更多
文摘TS-1/SiO2 catalyst for the epoxidation of propylene with hydrogen peroxide in a fixed-bed reactor has been investigated. The catalyst activity decreases gradually with the online reaction time, but the selectivity of propylene epoxide is kept at about 93%. The fresh, deactivated and regenerated catalysts were characterized with X-ray diffraction, Fourier transform infrared spectro- scopy, ultra-violet-visible diffuse reflectance, Brunner- Emmett-TeUer method and thermogravimetric analysis, and the deactivated catalyst was regenerated with H2O2/ methanol solution. Compared with the fresh catalyst, both the framework structure and the content of titanium in the framework of the deactivated and regenerated TS-1/SiO2 catalysts were not changed. The major reason of the catalyst deactivation was the blockage of the channels of the catalyst by bulky organic by-products, which covered the active centers of titanium in TS-1. The deposited materials on the deactivated TS-1/SiO2 catalyst could be removed by treatment with hydrogen peroxide/methanol solution or pure methanol; the higher the treatment temperature and the higher the concentration of H2O2 in methanol, the higher the extent of the regeneration. The regeneration treatment did not influence the product selectivity in the propylene epoxidation.