期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
结合模糊(C+P)均值聚类和SP-V-支持向量机的TSK分类器 被引量:1
1
作者 徐明亮 王士同 《光学精密工程》 EI CAS CSCD 北大核心 2016年第3期643-650,共8页
为获得具有模糊规则自适应约简性能和较好的泛化性能的TSK分类器,本文提出了一种结合模糊(C+P)均值聚类(FCPM)算法和SP-V-支持向量机(SVM)分类算法来构建TSK(Takagi-Sugeno-Kang)分类器的方法。该方法首先用FCPM聚类算法对训练数据进行... 为获得具有模糊规则自适应约简性能和较好的泛化性能的TSK分类器,本文提出了一种结合模糊(C+P)均值聚类(FCPM)算法和SP-V-支持向量机(SVM)分类算法来构建TSK(Takagi-Sugeno-Kang)分类器的方法。该方法首先用FCPM聚类算法对训练数据进行聚类;然后根据聚类结果确定TSK分类器的模糊规则前件中的高斯隶属度函数的中心和宽度参数;最后采用成组稀疏约束SP-V-SVM算法对模糊规则后件参数进行学习,该算法不仅改善了系统的泛化性能,还使系统具有模糊规则自适应约简功能,使得系统更为紧凑。与相关算法在UCI和IDA标准数据集分类实验中的模糊规则数和分类性能对比表明:用提出的分类算法所构造的TSK分类器不仅具有较好的分类性能,而且模糊规则数少,有利于构建更为紧凑的模糊分类系统。 展开更多
关键词 tsk分类器 模糊规则 规则约简 模糊(C+P)均值聚类(FCPM) SP-V-支持向量机(SVM)
下载PDF
面向不平衡数据的深度TSK模糊分类器
2
作者 卞则康 张进 王士同 《模式识别与人工智能》 EI CSCD 北大核心 2023年第3期211-224,共14页
为了进一步提升Takagi-Sugeno-Kang(TSK)模糊分类器在不平衡数据集上的泛化能力和保持其较好的语义可解释性,受集成学习的启发,提出面向不平衡数据的深度TSK模糊分类器(A Deep TSK Fuzzy Classifier for Imbalanced Data,ID-TSK-FC).ID-... 为了进一步提升Takagi-Sugeno-Kang(TSK)模糊分类器在不平衡数据集上的泛化能力和保持其较好的语义可解释性,受集成学习的启发,提出面向不平衡数据的深度TSK模糊分类器(A Deep TSK Fuzzy Classifier for Imbalanced Data,ID-TSK-FC).ID-TSK-FC主要由一个不平衡全局线性回归子分类器(Imbalanced Global Linear Regression Sub-Classifier,IGLRc)和多个不平衡TSK模糊子分类器(Imbalanced TSK Fuzzy Sub-Classifier,I-TSK-FC)组成.根据人类“从全局粗糙到局部精细”的认知行为和栈式叠加泛化原理,ID-TSK-FC首先在所有原始训练样本上训练一个IGLRc,获得全局粗糙的分类结果.然后根据IGLRc的输出,识别原始训练样本中的非线性分布训练样本.在非线性分布训练样本上,以栈式深度结构生成多个局部I-TSK-FC,获得局部精细的结果.最后,对于栈式堆叠IGLRc和所有I-TSK-FC的输出,使用基于最小距离投票原理,得到ID-TSK-FC的最终输出.实验表明,ID-TSK-FC不仅具有基于特征重要性的可解释性,而且具有至少相当的泛化性能和语义可解释性. 展开更多
关键词 tsk模糊分类器 语义可解释性 深度栈式结构 不平衡数据
下载PDF
增量式0阶TSK模糊分类器及鲁棒改进
3
作者 李滔 王士同 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2017年第10期1901-1911,共11页
为了克服传统的分类器难以在具有令人满意的分类性能、快速的学习效率的同时兼顾高可解释性之不足,提出增量式0阶模糊分类器TSK-IFC0IRLS.该分类器通过使用增量式模糊聚类算法IFCM(c+p)对训练样本进行聚类,使用高斯隶属度函数将聚类结... 为了克服传统的分类器难以在具有令人满意的分类性能、快速的学习效率的同时兼顾高可解释性之不足,提出增量式0阶模糊分类器TSK-IFC0IRLS.该分类器通过使用增量式模糊聚类算法IFCM(c+p)对训练样本进行聚类,使用高斯隶属度函数将聚类结果映射到模糊子空间,使用迭代重加权最小二乘优化算法IRLS对模糊规则的后件参数进行学习.通过提出基于伪Huber函数的代价函数,它的鲁棒性改进版本TSK-IFC0PHub被提出来以提高分类器的抗噪能力.仿真实验表明,与FCPM-IRLS、RBF、ANFIS分类器相比,提出的2种模糊分类器均具有良好的分类性能及数据规模的可扩展性,TSK-IFC0PHub具有良好的鲁棒性. 展开更多
关键词 增量式模糊聚类 迭代重加权最小二乘法 伪Huber函数 tsk模糊分类器 鲁棒性
下载PDF
基于迭代模糊聚类算法与K近邻和数据字典的集成TSK模糊分类器 被引量:17
4
作者 张雄涛 蒋云良 +2 位作者 潘兴广 胡文军 王士同 《电子与信息学报》 EI CSCD 北大核心 2020年第3期746-754,共9页
该文提出一种新型的集成TSK模糊分类器(IK-D-TSK),首先通过并行学习的方式组织所有0阶TSK模糊子分类器,然后每个子分类器的输出被扩充到原始(验证)输入空间,最后通过提出的迭代模糊聚类算法(IFCM)作用在增强验证集上生成数据字典,从而利... 该文提出一种新型的集成TSK模糊分类器(IK-D-TSK),首先通过并行学习的方式组织所有0阶TSK模糊子分类器,然后每个子分类器的输出被扩充到原始(验证)输入空间,最后通过提出的迭代模糊聚类算法(IFCM)作用在增强验证集上生成数据字典,从而利用KNN对测试数据进行快速预测。IK-D-TSK具有以下优点:在IK-DTSK中,每个0阶TSK子分类器的输出被扩充到原始入空间,以并行方式打开原始(验证)输入空间中存在的流形结构,根据堆栈泛化原理,可以保证提高分类精度;和传统TSK模糊分类器相比,IK-D-TSK以并行方式训练所有的子分类器,因此运行速度可以得到有效保证;由于IK-D-TSK是在以IFCM&KNN所获得的数据字典的基础上进行分类的,因此具有强鲁棒性。理论和实验验证了模糊分类器IK-D-TSK具有较高的分类性能、强鲁棒性和高可解释性。 展开更多
关键词 tsk模糊分类器 迭代模糊聚类算法 数据字典 可解释性
下载PDF
基于视角-规则的深度TSK模糊分类器及其在多元癫痫脑电信号识别中的应用
5
作者 张雄涛 李水苗 +2 位作者 翁江玮 胡文军 蒋云良 《控制与决策》 EI CSCD 北大核心 2024年第4期1315-1324,共10页
在癫痫脑电信号分类检测中,传统机器学习方法分类效果不理想,深度学习模型虽然具有较好的特征学习优势,但其“黑盒”学习方式不具备可解释性,不能很好地应用于临床辅助诊断;并且,现有的多视角深度TSK模糊系统难以有效表征各视角特征之... 在癫痫脑电信号分类检测中,传统机器学习方法分类效果不理想,深度学习模型虽然具有较好的特征学习优势,但其“黑盒”学习方式不具备可解释性,不能很好地应用于临床辅助诊断;并且,现有的多视角深度TSK模糊系统难以有效表征各视角特征之间的相关性.针对以上问题,提出一种基于视角-规则的深度Takagi-SugenoKang(TSK)模糊分类器(view-to-rule Takagi-Sugeno-Kang fuzzy classifier,VR-TSK-FC),并将其应用于多元癫痫脑电信号检测中.该算法在原始数据上构建前件规则以保证模型的可解释性,利用一维卷积神经网络(1-dimensional convolutional neural network,1D-CNN)从多角度抓取多元脑电信号深度特征.每个模糊规则的后件部分分别采用一个视角的脑电信号深度特征作为其后件变量,视角-规则的学习方式提高了VR-TSK-FC表征能力.在Bonn和CHB-MIT数据集上,VR-TSK-FC算法模糊逻辑推理过程保证可解释的基础上达到了较好分类效果. 展开更多
关键词 tsk模糊分类器 多视角深度特征 视角-规则 癫痫脑电信号检测 可解释性
原文传递
基于增强深度特征和TSK模糊分类器的癫痫脑电信号识别 被引量:3
6
作者 蒋云良 翁江玮 +2 位作者 申情 胡文军 张雄涛 《控制与决策》 EI CSCD 北大核心 2023年第1期171-180,共10页
识别癫痫脑电信号的关键在于获取有效的特征和构建可解释的分类器.为此,提出一种基于增强深度特征的TSK模糊分类器(ED-TSK-FC).首先,ED-TSK-FC使用一维卷积神经网络(1D-CNN)自动获取癫痫脑电信号的深度特征与潜在类别信息,并将深度特征... 识别癫痫脑电信号的关键在于获取有效的特征和构建可解释的分类器.为此,提出一种基于增强深度特征的TSK模糊分类器(ED-TSK-FC).首先,ED-TSK-FC使用一维卷积神经网络(1D-CNN)自动获取癫痫脑电信号的深度特征与潜在类别信息,并将深度特征和潜在类别信息合并为增强深度特征;其次,将增强深度特征作为EDTSK-FC模糊规则前件与后件部分的训练变量,保证原始输入的深度特征及其潜在意义都出现在模糊规则中,进而对增强深度特征作出良好的解释;然后,采用岭回归极限学习算法对模糊规则的后件参数进行快速求解,在不显著降低分类准确度的情况下,ED-TSK-FC的廉价训练方法可以缩短模型的训练时间;最后,在Bonn癫痫数据集上,分别从分类性能、学习效率和可解释性3个方面,验证ED-TSK-FC的优越性. 展开更多
关键词 脑电信号 深度学习 深度特征 增强特征 tsk模糊分类器 可解释性
原文传递
适合大规模数据集且基于LLM的0阶TSK模糊分类器 被引量:2
7
作者 李滔 王士同 《控制与决策》 EI CSCD 北大核心 2017年第1期21-30,共10页
针对传统分类器的泛化性能差、可解释性及学习效率低等问题,提出0阶TSK-FC模糊分类器.为了将该分类器应用到大规模数据的分类中,提出增量式0阶TSK-IFC模糊分类器,采用增量式模糊聚类算法(IFCM(c+p))训练模糊规则参数并通过适当的矩阵变... 针对传统分类器的泛化性能差、可解释性及学习效率低等问题,提出0阶TSK-FC模糊分类器.为了将该分类器应用到大规模数据的分类中,提出增量式0阶TSK-IFC模糊分类器,采用增量式模糊聚类算法(IFCM(c+p))训练模糊规则参数并通过适当的矩阵变换提升参数学习效率.仿真实验表明,与FCPM-IRLS模糊分类器、径向基函数神经网络相比,所提出的模糊分类器在不同规模数据集中均能保持很好的性能,且TSK-IFC模糊分类器在大规模数据分类中尤为突出. 展开更多
关键词 tsk-FC tsk-IFC 最小学习机 tsk型模糊分类器 大规模数据集
原文传递
并行集成具有高可解释的TSK模糊分类器 被引量:1
8
作者 张雄涛 蒋云良 +1 位作者 胡文军 王士同 《控制与决策》 EI CSCD 北大核心 2020年第10期2535-2542,共8页
针对分层Takagi-Sugeno-Kang (TSK)模糊分类器可解释性差,以及当增加或删除一个TSK模糊子分类器时Boosting模糊分类器需要重新训练所有TSK模糊子分类器等问题,提出一种并行集成具有高可解释的TSK模糊分类器EP-Q-TSK.该集成模糊分类器每... 针对分层Takagi-Sugeno-Kang (TSK)模糊分类器可解释性差,以及当增加或删除一个TSK模糊子分类器时Boosting模糊分类器需要重新训练所有TSK模糊子分类器等问题,提出一种并行集成具有高可解释的TSK模糊分类器EP-Q-TSK.该集成模糊分类器每个TSK模糊子分类器可以使用最小学习机(LLM)被并行地快速构建.作为一种新的集成学习方式,该分类器利用每个TSK模糊子分类器的增量输出来扩展原始验证数据空间,然后采用经典的模糊聚类算法FCM获取一系列代表性中心点,最后利用KNN对测试数据进行分类.在标准UCI数据集上,分别从分类性能和可解释性两方面验证了EP-Q-TSK的有效性. 展开更多
关键词 集成tsk模糊分类器 并行学习 最小学习机 代表性中心点
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部