In this paper we derive a multi-choice TU game from r-replica of exchange economy with continuous, concave and monetary utility functions, and prove that the cores of the games converge to a subset of the set of Edgew...In this paper we derive a multi-choice TU game from r-replica of exchange economy with continuous, concave and monetary utility functions, and prove that the cores of the games converge to a subset of the set of Edgeworth equilibria of exchange economy as r approaches to infinity. We prove that the dominance core of each balanced multi-choice TU game, where each player has identical activity level r, coincides with the dominance core of its corresponding r-replica of exchange economy. We also give an extension of the concept of the cover of the game proposed by Shapley and Shubik (J Econ Theory 1: 9-25, 1969) to multi-choice TU games and derive some sufficient conditions for the nonemptyness of the core of multi-choice TU game by using the relationship among replica economies, multi-choice TU games and their covers.展开更多
In this paper, we study an approach to environmental topics, through multicriteria partial cooperative games. In general, not all players wish to cooperate to solve a common problem, so we consider a model where only ...In this paper, we study an approach to environmental topics, through multicriteria partial cooperative games. In general, not all players wish to cooperate to solve a common problem, so we consider a model where only some decision-makers cooperate. Starting from the transformation of a coalition game into a strategic one, we give a new concept of solution for partial cooperative models proving an existence theorem.展开更多
The delivery of the natural gas obtained by drilling, fracking and sending the product to consumers is done usually in two phases: in the first phase, the gas is collected from all wells spread on a large area, and be...The delivery of the natural gas obtained by drilling, fracking and sending the product to consumers is done usually in two phases: in the first phase, the gas is collected from all wells spread on a large area, and belonging to several companies, and is sent to a depot owned by the city;then, in the second phase, another company is taking the gas on a network of ducts belonging to the city, along the streets to the neighborhoods and the individual consumers. The first phase is managed by the gas producing companies on the ducts owned by each company, possibly also on some public ducts. In this paper, we discuss only this first phase, to show why the benefits of these companies depend on the cooperation of the producers, and further, how a fair allocation of the total gas obtained, to the drilling companies, is computed. Following the model of flow games, we generate a cooperative transferable utilities game, as shown in the first section, and in this game any efficient value gives an allocation of benefits to the owners of ducts in the total network. However, it may well happen that the chosen value is not coalitional rational, in the game, that is, it does not belong to the Core of the game. By using the results obtained in an earlier work of the author, sketched in the second section, we show in the last section how the same allocation may be associated to a new game, which has the corresponding value a coalitional rational value. An example of a three person flow game shows the game generation, as well as the procedure to be used for obtaining the new game in which the same value, a Shapley Value, will give a coalitional rational allocation.展开更多
基金Supported by the Natural Science Foundation of Hebei Province of China(A2014205152)
文摘In this paper we derive a multi-choice TU game from r-replica of exchange economy with continuous, concave and monetary utility functions, and prove that the cores of the games converge to a subset of the set of Edgeworth equilibria of exchange economy as r approaches to infinity. We prove that the dominance core of each balanced multi-choice TU game, where each player has identical activity level r, coincides with the dominance core of its corresponding r-replica of exchange economy. We also give an extension of the concept of the cover of the game proposed by Shapley and Shubik (J Econ Theory 1: 9-25, 1969) to multi-choice TU games and derive some sufficient conditions for the nonemptyness of the core of multi-choice TU game by using the relationship among replica economies, multi-choice TU games and their covers.
文摘In this paper, we study an approach to environmental topics, through multicriteria partial cooperative games. In general, not all players wish to cooperate to solve a common problem, so we consider a model where only some decision-makers cooperate. Starting from the transformation of a coalition game into a strategic one, we give a new concept of solution for partial cooperative models proving an existence theorem.
文摘The delivery of the natural gas obtained by drilling, fracking and sending the product to consumers is done usually in two phases: in the first phase, the gas is collected from all wells spread on a large area, and belonging to several companies, and is sent to a depot owned by the city;then, in the second phase, another company is taking the gas on a network of ducts belonging to the city, along the streets to the neighborhoods and the individual consumers. The first phase is managed by the gas producing companies on the ducts owned by each company, possibly also on some public ducts. In this paper, we discuss only this first phase, to show why the benefits of these companies depend on the cooperation of the producers, and further, how a fair allocation of the total gas obtained, to the drilling companies, is computed. Following the model of flow games, we generate a cooperative transferable utilities game, as shown in the first section, and in this game any efficient value gives an allocation of benefits to the owners of ducts in the total network. However, it may well happen that the chosen value is not coalitional rational, in the game, that is, it does not belong to the Core of the game. By using the results obtained in an earlier work of the author, sketched in the second section, we show in the last section how the same allocation may be associated to a new game, which has the corresponding value a coalitional rational value. An example of a three person flow game shows the game generation, as well as the procedure to be used for obtaining the new game in which the same value, a Shapley Value, will give a coalitional rational allocation.