Brassinosteroids(BRs)are a class of steroid hormones with great potential for use in crop improvement.De-repression is usually one of the key events in hormone signaling.However,how the stability of GSK2,the central n...Brassinosteroids(BRs)are a class of steroid hormones with great potential for use in crop improvement.De-repression is usually one of the key events in hormone signaling.However,how the stability of GSK2,the central negative regulator of BR signaling in rice(Oryza sativa),is regulated by BRs remains elusive.Here,we identify the U-box ubiquitin ligase TUD1 as a GSK2-interacting protein by yeast two-hybrid screening.We show that TUD1 is able to directly interact with GSK2 and ubiquitinate the protein.Phenotypes of the tud1 mutant are highly similar to those of plants with constitutively activated GSK2.Consistent with this finding,GSK2 protein accumulates in the tud1 mutant compared with the wild type.In addition,inhibition of BR synthesis promotes GSK2 accumulation and suppresses TUD1 stability.By contrast,BRs can induce GSK2 degradation but promote TUD1 accumulation.Furthermore,the GSK2 degradation process is largely impaired in tud1 in response to BR.In conclusion,our study demonstrates the role of TUD1 in BR-induced GSK2 degradation,thereby advancing our understanding of a critical step in the BR signaling pathway of rice.展开更多
基金supported by the Hainan Yazhou Bay Seed Laboratory(B21HJ0215)the National Natural Science Foundation of China(nos.U21A20208,31900177,31901534,31871587)+1 种基金the Central Publicinterest Scientific Institution Basal Research Fund(no.S2022ZD02)D.L.was funded by the China Postdoctoral Science Foundation(2020M670548).
文摘Brassinosteroids(BRs)are a class of steroid hormones with great potential for use in crop improvement.De-repression is usually one of the key events in hormone signaling.However,how the stability of GSK2,the central negative regulator of BR signaling in rice(Oryza sativa),is regulated by BRs remains elusive.Here,we identify the U-box ubiquitin ligase TUD1 as a GSK2-interacting protein by yeast two-hybrid screening.We show that TUD1 is able to directly interact with GSK2 and ubiquitinate the protein.Phenotypes of the tud1 mutant are highly similar to those of plants with constitutively activated GSK2.Consistent with this finding,GSK2 protein accumulates in the tud1 mutant compared with the wild type.In addition,inhibition of BR synthesis promotes GSK2 accumulation and suppresses TUD1 stability.By contrast,BRs can induce GSK2 degradation but promote TUD1 accumulation.Furthermore,the GSK2 degradation process is largely impaired in tud1 in response to BR.In conclusion,our study demonstrates the role of TUD1 in BR-induced GSK2 degradation,thereby advancing our understanding of a critical step in the BR signaling pathway of rice.