Since 3D mesh security has become intellectual property,3D watermarking algorithms have continued to appear to secure 3D meshes shared by remote users and saved in distant multimedia databases.The novelty of our appro...Since 3D mesh security has become intellectual property,3D watermarking algorithms have continued to appear to secure 3D meshes shared by remote users and saved in distant multimedia databases.The novelty of our approach is that it uses a new Clifford-multiwavelet transform to insert copyright data in a multiresolution domain,allowing us to greatly expand the size of the watermark.After that,our method does two rounds of insertion,each applying a different type of Clifford-wavelet transform.Before being placed into the Clifford-multiwavelet coefficients,the watermark,which is a mixture of the mesh description,source mesh signature(produced using SHA512),and a logo encrypted using the RSA(Ronald Shamir Adleman)technique,is encoded using Turbo-code.Using the Least Significant Bit method steps,data embedding involves modulation and insertion processes.Finally,the watermarked mesh is reconstructed using the inverse Cliffordmultiwavelet transform.Due to the utilization of a hybrid insertion domain,our technique has demonstrated a very high insertion rate while retaining mesh quality.The mesh is watermarked,and the extracted data is acquired in real-time.Our approach is also resistant to the most common types of attacks.Our findings reveal that the current approach improves on previous efforts.展开更多
This paper deals with the presentation of different multi-user detectors in the Universal Mobile Telecommunications System (UMTS) context. The challenge is always to optimize the compromise between performance and com...This paper deals with the presentation of different multi-user detectors in the Universal Mobile Telecommunications System (UMTS) context. The challenge is always to optimize the compromise between performance and complexity. Compared with the solution commonly used today, the rake detector, successive interference cancellation (SIC) detector has better performance despite its higher complexity. Our innovative solution proposes joining detector and channel turbo decoder to get a significant gain in terms of performance. Furthermore, when detection and decoding are implemented in a single function, complexity does not increase much.展开更多
基金This research work was funded by the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia through the project number(IF-PSAU-2021/01/17567)。
文摘Since 3D mesh security has become intellectual property,3D watermarking algorithms have continued to appear to secure 3D meshes shared by remote users and saved in distant multimedia databases.The novelty of our approach is that it uses a new Clifford-multiwavelet transform to insert copyright data in a multiresolution domain,allowing us to greatly expand the size of the watermark.After that,our method does two rounds of insertion,each applying a different type of Clifford-wavelet transform.Before being placed into the Clifford-multiwavelet coefficients,the watermark,which is a mixture of the mesh description,source mesh signature(produced using SHA512),and a logo encrypted using the RSA(Ronald Shamir Adleman)technique,is encoded using Turbo-code.Using the Least Significant Bit method steps,data embedding involves modulation and insertion processes.Finally,the watermarked mesh is reconstructed using the inverse Cliffordmultiwavelet transform.Due to the utilization of a hybrid insertion domain,our technique has demonstrated a very high insertion rate while retaining mesh quality.The mesh is watermarked,and the extracted data is acquired in real-time.Our approach is also resistant to the most common types of attacks.Our findings reveal that the current approach improves on previous efforts.
文摘This paper deals with the presentation of different multi-user detectors in the Universal Mobile Telecommunications System (UMTS) context. The challenge is always to optimize the compromise between performance and complexity. Compared with the solution commonly used today, the rake detector, successive interference cancellation (SIC) detector has better performance despite its higher complexity. Our innovative solution proposes joining detector and channel turbo decoder to get a significant gain in terms of performance. Furthermore, when detection and decoding are implemented in a single function, complexity does not increase much.