期刊文献+
共找到120篇文章
< 1 2 6 >
每页显示 20 50 100
A FAMILY OF HIGH-ORDER ACCURACY EXPLICIT DIFFERENCE SCHEMES WITH BRANCHING STABILITY FOR SOLVING 3-D PARABOLIC PARTIAL DIFFERENTIAL EQUATION
1
作者 马明书 王同科 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第10期1207-1212,共6页
A family of high-order accuracy explict difference schemes for solving 3-dimension parabolic P. D. E. is constructed. The stability condition is r = Deltat/Deltax(2) Deltat/Deltay(2) = Deltat/Deltaz(2) < 1/2 ,and t... A family of high-order accuracy explict difference schemes for solving 3-dimension parabolic P. D. E. is constructed. The stability condition is r = Deltat/Deltax(2) Deltat/Deltay(2) = Deltat/Deltaz(2) < 1/2 ,and the truncation error is 0(<Delta>t(2) + Deltax(4)). 展开更多
关键词 high-order accuracy explicit difference scheme branching stability 3-D parabolic PDE
下载PDF
High Order of Accuracy for Poisson Equation Obtained by Grouping of Repeated Richardson Extrapolation with Fourth Order Schemes
2
作者 Luciano Pereira da Silva Bruno Benato Rutyna +1 位作者 Aline Roberta Santos Righi Marcio Augusto Villela Pinto 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第8期699-715,共17页
In this article,we improve the order of precision of the two-dimensional Poisson equation by combining extrapolation techniques with high order schemes.The high order solutions obtained traditionally generate non-spar... In this article,we improve the order of precision of the two-dimensional Poisson equation by combining extrapolation techniques with high order schemes.The high order solutions obtained traditionally generate non-sparse matrices and the calculation time is very high.We can obtain sparse matrices by applying compact schemes.In this article,we compare compact and exponential finite difference schemes of fourth order.The numerical solutions are calculated in quadruple precision(Real*16 or extended precision)in FORTRAN language,and iteratively obtained until reaching the round-off error magnitude around 1.0E−32.This procedure is performed to ensure that there is no iteration error.The Repeated Richardson Extrapolation(RRE)method combines numerical solutions in different grids,determining higher orders of accuracy.The main contribution of this work is based on a process that initializes with fourth order solutions combining with RRE in order to find solutions of sixth,eighth,and tenth order of precision.The multigrid Full Approximation Scheme(FAS)is also applied to accelerate the convergence and obtain the numerical solutions on the fine grids. 展开更多
关键词 Tenth order accuracy RRE compact scheme exponential scheme MULTIGRID finite difference
下载PDF
A CLASS OF COMPACT UPWIND TVD DIFFERENCE SCHEMES 被引量:1
3
作者 涂国华 袁湘江 +1 位作者 夏治强 呼振 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第6期765-772,共8页
A new method was proposed for constructing total variation diminishing (TVD) upwind schemes in conservation forms. Two limiters were used to prevent nonphysical oscillations across discontinuity. Both limiters can e... A new method was proposed for constructing total variation diminishing (TVD) upwind schemes in conservation forms. Two limiters were used to prevent nonphysical oscillations across discontinuity. Both limiters can ensure the nonlinear compact schemes TVD property. Two compact TVD (CTVD) schemes were tested, one is thirdorder accuracy, and the other is fifth-order. The performance of the numerical algorithms was assessed by one-dimensional complex waves and Riemann problems, as well as a twodimensional shock-vortex interaction and a shock-boundary flow interaction. Numerical results show their high-order accuracy and high resolution, and low oscillations across discontinuities. 展开更多
关键词 high-order difference schemes compact schemes tvd schemes shock- vortex shock-boundary
下载PDF
A UNIFORMLY CONVERGENT SECOND ORDER DIFFERENCE SCHEME FOR A SINGULARLY PERTURBED SELF-ADJOINT ORDINARY DIFFERENTIAL EQUATION IN CONSERVATION FORM
4
作者 郭雯 林鹏程 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第3期231-241,共11页
In this paper, based on the idea of El-Mistikawy and Werle[1] we construct a difference scheme for a singularly perturbed self-adjoint ordinary differential equation in conservation form. We prove that it is a uniform... In this paper, based on the idea of El-Mistikawy and Werle[1] we construct a difference scheme for a singularly perturbed self-adjoint ordinary differential equation in conservation form. We prove that it is a uniformly convergent second order scheme. 展开更多
关键词 exp A UNIFORMLY CONVERGENT second order difference SCHEME FOR A SINGULARLY PERTURBED SELF-ADJOINT ORDINARY DIFFERENTIAL EQUATION IN CONSERVATION FORM
下载PDF
A-HIGH-ORDER ACCURACY EXPLICIT DIFFERENCE SCHEME FOR SOLVING THE EQUATION OF TWO-DIMENSIONAL PARABOLIC TYPE
5
作者 马明书 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1996年第11期1075-1079,共5页
In this paper. a three explicit difference shcemes with high order accuracy for solving the equations of two-dimensional parabolic type is proposed. The stability condition is r=△t/△x ̄ 2=△t/△y ̄2≤1/4 and the... In this paper. a three explicit difference shcemes with high order accuracy for solving the equations of two-dimensional parabolic type is proposed. The stability condition is r=△t/△x ̄ 2=△t/△y ̄2≤1/4 and the truncation error is O (△t ̄2 + △x ̄4 ). 展开更多
关键词 high-order accuracy explicit difference scheme equation of twodimensional parabolic type
下载PDF
A NEW HIGH-ORDER ACCURACY EXPLICIT DIFFERENCE SCHEME FOR SOLVING THREE-DIMENSIONAL PARABOLIC EQUATIONS
6
作者 马明书 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1998年第5期497-501,共5页
In this paper, a new three-level explicit difference scheme with high-order accuracy is proposed for solving three-dimensional parabolic equations. The stability condition is r = Delta t/Delta x(2) = Delta t/Delta gam... In this paper, a new three-level explicit difference scheme with high-order accuracy is proposed for solving three-dimensional parabolic equations. The stability condition is r = Delta t/Delta x(2) = Delta t/Delta gamma(2) = Delta t/Delta z(2) less than or equal to 1/4, and the truncation error is O(Delta t(2) + Delta x(4)). 展开更多
关键词 high-order accuracy explicit difference scheme three-dimensional parabolic equation
全文增补中
THE UNCONDITIONAL STABILITY OF PARALLEL DIFFERENCE SCHEMES WITH SECOND ORDER CONVERGENCE FOR NONLINEAR PARABOLIC SYSTEM 被引量:10
7
作者 Yuan Guangwei Sheng Zhiqiang Hang Xudeng 《Journal of Partial Differential Equations》 2007年第1期45-64,共20页
For solving nonlinear parabolic equation on massive parallel computers, the construction of parallel difference schemes with simple design, high parallelism and unconditional stability and second order global accuracy... For solving nonlinear parabolic equation on massive parallel computers, the construction of parallel difference schemes with simple design, high parallelism and unconditional stability and second order global accuracy in space, has long been desired. In the present work, a new kind of general parallel difference schemes for the nonlinear parabolic system is proposed. The general parallel difference schemes include, among others, two new parallel schemes. In one of them, to obtain the interface values on the interface of sub-domains an explicit scheme of Jacobian type is employed, and then the fully implicit scheme is used in the sub-domains. Here, in the explicit scheme of Jacobian type, the values at the points being adjacent to the interface points are taken as the linear combination of values of previous two time layers at the adjoining points of the inner interface. For the construction of another new parallel difference scheme, the main procedure is as follows. Firstly the linear combination of values of previous two time layers at the interface points among the sub-domains is used as the (Dirichlet) boundary condition for solving the sub-domain problems. Then the values in the sub-domains are calculated by the fully implicit scheme. Finally the interface values are computed by the fully implicit scheme, and in fact these calculations of the last step are explicit since the values adjacent to the interface points have been obtained in the previous step. The existence, uniqueness, unconditional stability and the second order accuracy of the discrete vector solutions for the parallel difference schemes are proved. Numerical results are presented to examine the stability, accuracy and parallelism of the parallel schemes. 展开更多
关键词 Parallel difference scheme nonlinear parabolic system unconditional stability second order convergence.
原文传递
线性双曲型方程新的TVD格式 被引量:5
8
作者 倪汉根 王嘉松 金生 《计算物理》 CSCD 北大核心 1999年第1期25-30,共6页
从双曲型方程的TVD条件出发,分析了LaxWendrof格式和WarmingBeam格式所存在的TVD区间,构造了空间三点和四点新的二阶TVD格式,使其在极值点也保持二阶精度。
关键词 tvd 双曲型方程 差分格式 二阶精度
下载PDF
双曲型线性方程三阶和四阶TVD格式的新构造 被引量:2
9
作者 王嘉松 倪汉根 何友声 《上海交通大学学报》 EI CAS CSCD 北大核心 2003年第4期548-551,共4页
利用 Taylor级数理论和总变差减小 ( TVD)格式的充分条件构造了时间二阶、空间五点三阶和四阶新 TVD格式 .给出了新 TVD格式与传统 TVD格式及近期建立的二阶新 TVD格式用于线性双曲型方程的计算结果 ,表明本文新格式特别是四阶 TVD格式... 利用 Taylor级数理论和总变差减小 ( TVD)格式的充分条件构造了时间二阶、空间五点三阶和四阶新 TVD格式 .给出了新 TVD格式与传统 TVD格式及近期建立的二阶新 TVD格式用于线性双曲型方程的计算结果 ,表明本文新格式特别是四阶 TVD格式具有比二阶新 TVD格式和传统 TVD格式峰值衰减更慢、间断更陡 ,而计算工作量具有与传统二阶 展开更多
关键词 总变差减小 TAYLOR级数 双曲型方程 差分格式 高阶精度
下载PDF
双曲型守恒律的一种高精度TVD差分格式 被引量:3
10
作者 郑华盛 赵宁 《计算物理》 CSCD 北大核心 2005年第1期13-18,共6页
 构造了一维双曲型守恒律方程的一个高精度高分辨率的守恒型TVD差分格式.其主要思想是:首先将计算区域划分为互不重叠的小单元,且每个小单元再根据希望的精度阶数分为细小单元;其次,根据流动方向将通量分裂为正、负通量,并通过小单元...  构造了一维双曲型守恒律方程的一个高精度高分辨率的守恒型TVD差分格式.其主要思想是:首先将计算区域划分为互不重叠的小单元,且每个小单元再根据希望的精度阶数分为细小单元;其次,根据流动方向将通量分裂为正、负通量,并通过小单元上的高阶插值逼近得到了细小单元边界上的正、负数值通量,为避免由高阶插值产生的数值振荡,进一步根据流向对其进行TVD校正;再利用高阶Runge KuttaTVD离散方法对时间进行离散,得到了高阶全离散方法.进一步推广到一维方程组情形.最后对一维欧拉方程组计算了几个算例. 展开更多
关键词 高阶 双曲型 守恒律 tvd差分格式 一维 欧拉方程组 全离散 单元 负数 离散方法
下载PDF
高精度两步TVD格式的构造及数值检验 被引量:2
11
作者 汪银乐 鞠银 《航空动力学报》 EI CAS CSCD 北大核心 2006年第6期1043-1047,共5页
基于通量分裂的思想,利用Taylor级数理论和第二步限制器函数的控制,构造了在光滑区域空间为三阶、时间为一阶精度的高分辨率全变差递减(TVD)格式。该格式在激波过渡点降为一阶迎风格式。并从单个线形方程推广到非线性方程及方程组情形... 基于通量分裂的思想,利用Taylor级数理论和第二步限制器函数的控制,构造了在光滑区域空间为三阶、时间为一阶精度的高分辨率全变差递减(TVD)格式。该格式在激波过渡点降为一阶迎风格式。并从单个线形方程推广到非线性方程及方程组情形。通过几个典型算例的计算,并与二阶TVD格式作了比较,表明该方法对流场中的激波有较高的分辨率,且是无波动的。 展开更多
关键词 航空 航天推进系统 tvd格式 TAYLOR级数 二步格式 高精度
下载PDF
一类高精度TVD差分格式及其应用 被引量:1
12
作者 郑华盛 赵宁 《应用力学学报》 EI CAS CSCD 北大核心 2005年第4期550-554,676,共5页
构造了一维非线性双曲型守恒律的一个新的高精度、高分辨率的守恒型TVD差分格式。其构造思想是:首先,将计算区间划分为若干个互不相交的小区间,再根据精度要求等分小区间,通过各细小区间上的单元平均状态变量,重构各细小区间交界面上的... 构造了一维非线性双曲型守恒律的一个新的高精度、高分辨率的守恒型TVD差分格式。其构造思想是:首先,将计算区间划分为若干个互不相交的小区间,再根据精度要求等分小区间,通过各细小区间上的单元平均状态变量,重构各细小区间交界面上的状态变量,并加以校正;其次,利用近似R iemann解计算细小区间交界面上的数值通量,并结合高阶Runge-Kutta TVD方法进行时间离散,得到了高精度的全离散方法。证明了该格式的TVD特性。该格式适合于使用分量形式计算而无须进行局部特征分解。通过计算几个典型的问题,验证了格式具有高精度、高分辨率且计算简单的优点。 展开更多
关键词 双曲型守恒律 高阶精度 tvd差分格式 欧拉方程组
下载PDF
一种二阶TVD差分格式构造方法 被引量:1
13
作者 蔚淑君 《内蒙古师范大学学报(自然科学汉文版)》 CAS 2004年第4期382-385,389,共5页
采用一阶迎风差分格式,作Taylor展开,消去低阶项,给出了求解一维和二维等熵气动力学方程组的一种双参数二阶精度TVD差分格式的构造方法.
关键词 构造方法 二阶精度 tvd差分格式 迎风差分格式 双参数 一维 TAYLOR展开
下载PDF
双曲型守恒律方程的一个大时间步长二阶TVD差分格式 被引量:1
14
作者 戴嘉尊 王晓华 《南京航空学院学报》 CSCD 1989年第3期104-113,共10页
本文根据Harten,A.的大时间步长差分分格式构造思想,为双曲型守恒律方程弱解计算构造了一个2K+3点大时间步长二阶显式差分格式——LTS-LF格式,得到了其在CFL限制K下为总变差不增差分格式(TVD格式)。文章按照Roe的方法推广格式到方程组情... 本文根据Harten,A.的大时间步长差分分格式构造思想,为双曲型守恒律方程弱解计算构造了一个2K+3点大时间步长二阶显式差分格式——LTS-LF格式,得到了其在CFL限制K下为总变差不增差分格式(TVD格式)。文章按照Roe的方法推广格式到方程组情形,并就Burger’s方程和Euler方程组黎曼问题进行数值试验,结果令人满意。 展开更多
关键词 守恒律方程 差分格式 二阶精度
下载PDF
一类基于通量分裂的二阶精度TVD差分格式
15
作者 郑华盛 丁荣华 《南昌大学学报(理科版)》 CAS 北大核心 2005年第2期119-121,125,共4页
基于通量分裂和逆风特性,选取单元交界面上的正、负数值通量,并结合高阶Runge-KuttaTVD时间离散方法,构造了一维非线性双曲型守恒律的一类二阶精度的差分格式,证明了差分格式的TVD特性。按分量形式推广到方程组。通过几个典型的数值算... 基于通量分裂和逆风特性,选取单元交界面上的正、负数值通量,并结合高阶Runge-KuttaTVD时间离散方法,构造了一维非线性双曲型守恒律的一类二阶精度的差分格式,证明了差分格式的TVD特性。按分量形式推广到方程组。通过几个典型的数值算例验证了格式的有效性。 展开更多
关键词 双曲型守恒律 tvd差分格式 通量分裂 二阶精度 EULER方程
下载PDF
一类椭圆型Dirichlet边值问题的高精度Richardson外推法
16
作者 李曹杰 张海湘 杨雪花 《湖南工业大学学报》 2024年第1期91-97,104,共8页
针对椭圆型偏微分方程,先建立四阶和六阶精度的紧致差分格式,在此基础上用Richardson外推法,得到其六阶和八阶精度的外推差分格式。并通过两个Poisson方程算例,验算已建立的差分格式。数值算例结果表明,基于紧致差分格式的Richardson外... 针对椭圆型偏微分方程,先建立四阶和六阶精度的紧致差分格式,在此基础上用Richardson外推法,得到其六阶和八阶精度的外推差分格式。并通过两个Poisson方程算例,验算已建立的差分格式。数值算例结果表明,基于紧致差分格式的Richardson外推法能够得到有效的、健壮的高精度数值解。 展开更多
关键词 计算数学 椭圆型偏微分方程 紧致差分格式 RICHARDSON外推法 高阶精度
下载PDF
双曲方程的一种二阶TVD差分格式构造方法
17
作者 丁彦武 蔚淑君 钱进 《内蒙古大学学报(自然科学版)》 CAS CSCD 1999年第6期683-687,共5页
本文采用一阶迎风差分格式作Taylor展开,消去低阶项,给出求解守恒型双曲方程初值问题的一种二阶TVD 差分格式的构造方法。
关键词 守恒型 非守恒型 tvd差分格式 双曲型方程
下载PDF
Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs 被引量:1
18
作者 W. W. Mohammed M. A. Sohaly +1 位作者 A. H. El-Bassiouny K. A. Elnagar 《American Journal of Computational Mathematics》 2014年第4期280-288,共9页
Stochastic partial differential equations (SPDEs) describe the dynamics of stochastic processes depending on space-time continuum. These equations have been widely used to model many applications in engineering and ma... Stochastic partial differential equations (SPDEs) describe the dynamics of stochastic processes depending on space-time continuum. These equations have been widely used to model many applications in engineering and mathematical sciences. In this paper we use three finite difference schemes in order to approximate the solution of stochastic parabolic partial differential equations. The conditions of the mean square convergence of the numerical solution are studied. Some case studies are discussed. 展开更多
关键词 STOCHASTIC Partial Differential EQUATIONS Mean SQUARE SENSE second order Random Variable Finite difference Scheme
下载PDF
A Second Order Difference Scheme with Nonuniform Rectangular Meshes for Nonlinear Parabolic System
19
作者 Zheng-su Wan Guang-nan Chen 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2009年第1期159-166,共8页
In this paper, a difference scheme with nonuniform meshes is proposed for the initial-boundary problem of the nonlinear parabolic system. It is proved that the difference scheme is second order convergent in both spac... In this paper, a difference scheme with nonuniform meshes is proposed for the initial-boundary problem of the nonlinear parabolic system. It is proved that the difference scheme is second order convergent in both space and time. 展开更多
关键词 second order difference scheme nonuniform meshes nonlinear parabolic system
原文传递
KdV方程的一个六阶空间精度守恒差分格式 被引量:1
20
作者 郭祯 吴明明 胡劲松 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第3期33-38,共6页
本文对含齐次边界条件的KdV方程的初边值问题进行了数值研究.通过在时间层进行二阶精度的Crank-Nicolson差分离散、在空间层进行六阶精度的外推组合差分离散,本文建立了一个具有六阶空间精度的两层非线性差分格式.该格式能够合理地模拟... 本文对含齐次边界条件的KdV方程的初边值问题进行了数值研究.通过在时间层进行二阶精度的Crank-Nicolson差分离散、在空间层进行六阶精度的外推组合差分离散,本文建立了一个具有六阶空间精度的两层非线性差分格式.该格式能够合理地模拟原问题的两个守恒量.然后,本文利用能量方法证明了格式的收敛性和稳定性.数值算例验证了该方法的有效性. 展开更多
关键词 KDV方程 CRANK-NICOLSON差分格式 六阶精度 守恒
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部