By conjugating features of combustion gas jetting flows of the solid-rocket and using mathematical methods, a numerical scheme is systematically derived based on Harten′s standard TVD scheme, which fits for the flow ...By conjugating features of combustion gas jetting flows of the solid-rocket and using mathematical methods, a numerical scheme is systematically derived based on Harten′s standard TVD scheme, which fits for the flow with high temperature, pressure and velocity. The rational calculation formula of pressure partial derivation is also given out. By using the chemical kinetics knowledge, problems of multi-component and finite rate chemical reaction contained in combustion gas of the rocket flow field are discussed. The method for solving the mass source term of chemical reaction is clarified. Taking 9 reaction equations with 12 components as an example and utilizing the established calculation program, the free jetting flow field of the rocket is simulated. Numerical results show the correctness of the numerical scheme.展开更多
In this study, a transonic flow past NACA0012 profile at angle of attack α=0^0 whose aspect ratio AR is 1.0 with non-equilibrium condensation is analyzed by numerical analysis using a TVD scheme and is investigated u...In this study, a transonic flow past NACA0012 profile at angle of attack α=0^0 whose aspect ratio AR is 1.0 with non-equilibrium condensation is analyzed by numerical analysis using a TVD scheme and is investigated using an intermittent indraft type supersonic wind tunnel. Transonic flows of 0.78-0.90 in free stream Mach number with the variations of the stagnation relative humidity(φ0) are tested. For the same free stream Mach number, the increase in φ0 causes decrease in the drag coefficient of profile which is composed of the drag components of form, viscous and wave. In the case of the same Moo and To, for more than φ0=30%, despite the irreversibility of process in non-equilibrium condensation, the drag by shock wave decreases considerably with the increase of φ0. On the other hand, it shows that the effect of condensation on the drag coefficients of form and viscous is negligible. As an example, the decreasing rate in the drag coefficient of profile caused by the influence of non-equilibrium condensation for the case of M∞=0.9 and φ0 =50% amounts to 34%. Also, it were turned out that the size of supersonic bubble (that is, the maximum height of supersonic zone) and the deviation of pressure coefficient from the value for M=1 decrease with the increase of φ0 for the same M∞.展开更多
文摘By conjugating features of combustion gas jetting flows of the solid-rocket and using mathematical methods, a numerical scheme is systematically derived based on Harten′s standard TVD scheme, which fits for the flow with high temperature, pressure and velocity. The rational calculation formula of pressure partial derivation is also given out. By using the chemical kinetics knowledge, problems of multi-component and finite rate chemical reaction contained in combustion gas of the rocket flow field are discussed. The method for solving the mass source term of chemical reaction is clarified. Taking 9 reaction equations with 12 components as an example and utilizing the established calculation program, the free jetting flow field of the rocket is simulated. Numerical results show the correctness of the numerical scheme.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology(2012-0004567)Kyungpook National University Research Fund 2012
文摘In this study, a transonic flow past NACA0012 profile at angle of attack α=0^0 whose aspect ratio AR is 1.0 with non-equilibrium condensation is analyzed by numerical analysis using a TVD scheme and is investigated using an intermittent indraft type supersonic wind tunnel. Transonic flows of 0.78-0.90 in free stream Mach number with the variations of the stagnation relative humidity(φ0) are tested. For the same free stream Mach number, the increase in φ0 causes decrease in the drag coefficient of profile which is composed of the drag components of form, viscous and wave. In the case of the same Moo and To, for more than φ0=30%, despite the irreversibility of process in non-equilibrium condensation, the drag by shock wave decreases considerably with the increase of φ0. On the other hand, it shows that the effect of condensation on the drag coefficients of form and viscous is negligible. As an example, the decreasing rate in the drag coefficient of profile caused by the influence of non-equilibrium condensation for the case of M∞=0.9 and φ0 =50% amounts to 34%. Also, it were turned out that the size of supersonic bubble (that is, the maximum height of supersonic zone) and the deviation of pressure coefficient from the value for M=1 decrease with the increase of φ0 for the same M∞.