In this paper, a nonconforming triangular mixed finite element scheme with second order convergence behavior is proposed for the stationary Navier-Stokes equations.The new nonconforming triangular element is taken as ...In this paper, a nonconforming triangular mixed finite element scheme with second order convergence behavior is proposed for the stationary Navier-Stokes equations.The new nonconforming triangular element is taken as approximation space for the velocity and the linear element for the pressure. The convergence analysis is presented and optimal error estimates of both broken H^1-norm and L^2-norm for velocity as well as the L^2-norm for the pressure are derived.展开更多
A mixed algorithm of central and upwind difference scheme for the solution of steady/unsteady incompressible Navier-Stokes equations is presented. The algorithm is based on the method of artificial compressibility and...A mixed algorithm of central and upwind difference scheme for the solution of steady/unsteady incompressible Navier-Stokes equations is presented. The algorithm is based on the method of artificial compressibility and uses a third-order flux-difference splitting technique for the convective terms and the second-order central difference for the viscous terms. The numerical flux of semi-discrete equations is computed by using the Roe approximation. Time accuracy is obtained in the numerical solutions by subiterating the equations in pseudotime for each physical time step. The algebraic turbulence model of Baldwin-Lomax is ulsed in this work. As examples, the solutions of flow through two dimensional flat, airfoil, prolate spheroid and cerebral aneurysm are computed and the results are compared with experimental data. The results show that the coefficient of pressure and skin friction are agreement with experimental data, the largest discrepancy occur in the separation region where the lagebraic turbulence model of Baldwin-Lomax could not exactly predict the flow.展开更多
In this paper, a fully third-order accurate projection method for solving the incompressible Navier-Stokes equations is proposed. To construct the scheme, a continuous projection procedure is firstly presented. We the...In this paper, a fully third-order accurate projection method for solving the incompressible Navier-Stokes equations is proposed. To construct the scheme, a continuous projection procedure is firstly presented. We then derive a sufficient condition for the continuous projection equations to be temporally third-order accurate approximations of the original Navier-Stokes equations by means of the localtruncation-error-analysis technique. The continuous projection equations are discretized temporally and spatially to third-order accuracy on the staggered grids, resulting in a fully third-order discrete projection scheme. The possibility to design higher-order projection methods is thus demonstrated in the present paper. A heuristic stability analysis is performed on this projection method showing the probability of its being stable. The stability of the present scheme is further verified through numerical tests. The third-order accuracy of the present projection method is validated by several numerical test cases.展开更多
To apply the fictitious domain method and conduct numericalexperiments, a boundary value problem for an ordinary differential equation is considered. The results of numerical calculations for different valuesof the it...To apply the fictitious domain method and conduct numericalexperiments, a boundary value problem for an ordinary differential equation is considered. The results of numerical calculations for different valuesof the iterative parameter τ and the small parameter ε are presented. Astudy of the auxiliary problem of the fictitious domain method for NavierStokes equations with continuation into a fictitious subdomain by highercoefficients with a small parameter is carried out. A generalized solutionof the auxiliary problem of the fictitious domain method with continuationby higher coefficients with a small parameter is determined. After all theabove mathematical studies, a computational algorithm has been developedfor the numerical solution of the problem. Two methods were used to solvethe problem numerically. The first variant is the fictitious domain methodassociated with the modification of nonlinear terms in a fictitious subdomain.The model problem shows the effectiveness of using such a modification. Theproposed version of the method is used to solve two problems at once that arisewhile numerically solving systems of Navier-Stokes equations: the problem ofa curved boundary of an arbitrary domain and the problem of absence of aboundary condition for pressure in physical formulation of the internal flowproblem. The main advantage of this method is its universality in developmentof computer programs. The second method used calculation on a uniform gridinside the area. When numerically implementing the solution on a uniformgrid inside the domain, using this method it’s possible to accurately take intoaccount the boundaries of the curved domain and ensure the accuracy of thevalue of the function at the boundaries of the domain. Methodical calculationswere carried out, the results of numerical calculations were obtained. Whenconducting numerical experiments in both cases, quantitative and qualitativeindicators of numerical results coincide.展开更多
We prove that the limits of the semi-discrete and the discrete semi-implicit Euler schemes for the 3D Navier-Stokes equations supplemented with Dirichlet boundary conditions are suitable in the sense of Scheffer [1]. ...We prove that the limits of the semi-discrete and the discrete semi-implicit Euler schemes for the 3D Navier-Stokes equations supplemented with Dirichlet boundary conditions are suitable in the sense of Scheffer [1]. This provides a new proof of the existence of suitable weak solutions, first established by Caffarelli, Kohn and Nirenberg [2]. Our results are similar to the main result in [3]. We also present some additional remarks and open questions on suitable solutions.展开更多
A new high-order accurate staggered semi-implicit space-time discontinuous Galerkin(DG)method is presented for the simulation of viscous incompressible flows on unstructured triangular grids in two space dimensions.Th...A new high-order accurate staggered semi-implicit space-time discontinuous Galerkin(DG)method is presented for the simulation of viscous incompressible flows on unstructured triangular grids in two space dimensions.The staggered DG scheme defines the discrete pressure on the primal triangular mesh,while the discrete velocity is defined on a staggered edge-based dual quadrilateral mesh.In this paper,a new pair of equal-order-interpolation velocity-pressure finite elements is proposed.On the primary triangular mesh(the pressure elements),the basis functions are piecewise polynomials of degree N and are allowed to jump on the boundaries of each triangle.On the dual mesh instead(the velocity elements),the basis functions consist in the union of piecewise polynomials of degree N on the two subtriangles that compose each quadrilateral and are allowed to jump only on the dual element boundaries,while they are continuous inside.In other words,the basis functions on the dual mesh arc built by continuous finite elements on the subtriangles.This choice allows the construction of an efficient,quadrature-free and memory saving algorithm.In our coupled space-time pressure correction formulation for the incompressible Navier-Stokes equations,the arbitrary high order of accuracy in time is achieved through tire use of time-dependent test and basis functions,in combination with simple and efficient Picard iterations.Several numerical tests on classical benchmarks confirm that the proposed method outperforms existing staggered semi-implicit space-time DG schemes,not only from a computer memory point of view,but also concerning the computational time.展开更多
The previously developed single-sweep parabolized Navier-Stokes (SSPNS) space marching code for ideal gas flows has been extended to compute chemically nonequilibrium flows. In the code, the strongly coupled set of ...The previously developed single-sweep parabolized Navier-Stokes (SSPNS) space marching code for ideal gas flows has been extended to compute chemically nonequilibrium flows. In the code, the strongly coupled set of gas dynamics, species conservation, and turbulence equations is integrated with the implicit lower-upper symmetric GaussSeidel (LU-SGS) method in the streamwise direction in a space marching manner. The AUSMPW+ scheme is used to calculate the inviscid fluxes in the crossflow direction, while the conventional central scheme for the viscous fluxes. The k-g two-equation turbulence model is used. The revised SSPNS code is validated by computing the Burrows-Kurkov non-premixed H2/air supersonic combustion flows, premixed H2/air hypersonic combustion flows in a three-dimensional duct with a 15° compression ramp, as well as the hypersonic laminar chemically nonequilibrium air flows around two 10° half-angle cones. The results of these calculations are in good agreement with those of experiments, NASA UPS or Prabhu's PNS codes. It can be concluded that the SSPNS code is highly efficient for steady supersonic/ hypersonic chemically reaction flows when there is no large streamwise separation.展开更多
In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubi...In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.展开更多
The proper orthogonal decomposition(POD)and the singular value decomposition(SVD) are used to study the finite difference scheme(FDS)for the nonstationary Navier-Stokes equations. Ensembles of data are compiled from t...The proper orthogonal decomposition(POD)and the singular value decomposition(SVD) are used to study the finite difference scheme(FDS)for the nonstationary Navier-Stokes equations. Ensembles of data are compiled from the transient solutions computed from the discrete equation system derived from the FDS for the nonstationary Navier-Stokes equations.The optimal orthogonal bases are reconstructed by the elements of the ensemble with POD and SVD.Combining the above procedures with a Galerkin projection approach yields a new optimizing FDS model with lower dimensions and a high accuracy for the nonstationary Navier-Stokes equations.The errors between POD approximate solutions and FDS solutions are analyzed.It is shown by considering the results obtained for numerical simulations of cavity flows that the error between POD approximate solution and FDS solution is consistent with theoretical results.Moreover,it is also shown that this validates the feasibility and efficiency of POD method.展开更多
The inconsistent accuracy and truncation error in the treatment of boundary usually leads to performance defects,such as decreased accuracy and even numerical instability,of the entire computational method,especially ...The inconsistent accuracy and truncation error in the treatment of boundary usually leads to performance defects,such as decreased accuracy and even numerical instability,of the entire computational method,especially for higher order methods.In this work,we construct a consistent fourth-order compact finite difference scheme for solving two-dimensional incompressible Navier-Stokes(N-S)equations.In the pro-posed method,the main truncation error term of the boundary scheme is kept the same as that of the interior compact finite difference scheme.With such a feature,the nu-merical stability and accuracy of the entire computation can be maintained the same as the interior compact finite difference scheme.Numerical examples show the effec-tiveness and accuracy of the present consistent compact high order scheme in L^(∞).Its application to two dimensional lid-driven cavity flow problem further exhibits that un-der the same condition,the computed solution with the present scheme is much close to the benchmark in comparison to those from the 4^(th)order explicit scheme.The compact finite difference method equipped with the present consistent boundary technique im-proves much the stability of the whole computation and shows its potential application to incompressible flow of high Reynolds number.展开更多
A discontinuous Galerkin Method based on a Bhatnagar-Gross-Krook(BGK)formulation is presented for the solution of the compressible Navier-Stokes equations on arbitrary grids.The idea behind this approach is to combine...A discontinuous Galerkin Method based on a Bhatnagar-Gross-Krook(BGK)formulation is presented for the solution of the compressible Navier-Stokes equations on arbitrary grids.The idea behind this approach is to combine the robustness of the BGK scheme with the accuracy of the DG methods in an effort to develop a more accurate,efficient,and robust method for numerical simulations of viscous flows in a wide range of flow regimes.Unlike the traditional discontinuous Galerkin methods,where a Local Discontinuous Galerkin(LDG)formulation is usually used to discretize the viscous fluxes in the Navier-Stokes equations,this DG method uses a BGK scheme to compute the fluxes which not only couples the convective and dissipative terms together,but also includes both discontinuous and continuous representation in the flux evaluation at a cell interface through a simple hybrid gas distribution function.The developed method is used to compute a variety of viscous flow problems on arbitrary grids.The numerical results obtained by this BGKDG method are extremely promising and encouraging in terms of both accuracy and robustness,indicating its ability and potential to become not just a competitive but simply a superior approach than the current available numerical methods.展开更多
In this paper,the unconditional error estimates are presented for the time-dependent Navier-Stokes equations by the bilinear-constant scheme.The corresponding optimal error estimates for the velocity and the pressure ...In this paper,the unconditional error estimates are presented for the time-dependent Navier-Stokes equations by the bilinear-constant scheme.The corresponding optimal error estimates for the velocity and the pressure are derived unconditionally,while the previous works require certain time-step restrictions.The analysis is based on an iterated time-discrete system,with which the error function is split into a temporal error and a spatial error.The τ-independent(τ is the time stepsize)error estimate between the numerical solution and the solution of the time-discrete system is proven by a rigorous analysis,which implies that the numerical solution in L^(∞)-norm is bounded.Thus optimal error estimates can be obtained in a traditional way.Numerical results are provided to confirm the theoretical analysis.展开更多
This paper constructs a strongly-consistent explicit finite difference scheme for 3D constant viscosity incompressible Navier-Stokes equations by using of symbolic algebraic computation.The difference scheme is space ...This paper constructs a strongly-consistent explicit finite difference scheme for 3D constant viscosity incompressible Navier-Stokes equations by using of symbolic algebraic computation.The difference scheme is space second order accurate and temporal first order accurate. It is proved that difference Grobner basis algorithm is correct. By using of difference Grobner basis computation method, an element in Gr?bner basis of difference scheme for momentum equations is a difference scheme for pressure Poisson equation. The authors find that the truncation errors expressions of difference scheme is consistent with continuous errors functions about modified version of above difference equation. The authors prove that, for strongly consistent difference scheme, each element in the difference Grobner basis of such difference scheme always approximates a differential equation which vanishes on the analytic solutions of Navier-Stokes equations. To prove the strongly-consistency of this difference scheme, the differential Thomas decomposition theorem for nonlinear differential equations and difference Grobner basis theorems for difference equations are applied. Numerical test certifies that strongly-consistent difference scheme is effective.展开更多
We extend the SCGS smoothing procedure (Symmetrical Collective Gauss-Seidel relaxation) proposed by S. P. Vanka[4], for multigrid solvers of the steady viscous incompressible Navier-Stokes equations, to corresponding ...We extend the SCGS smoothing procedure (Symmetrical Collective Gauss-Seidel relaxation) proposed by S. P. Vanka[4], for multigrid solvers of the steady viscous incompressible Navier-Stokes equations, to corresponding line-wise versions. The resulting relaxation schemes are integrated into the multigrid solver based on second-order upwind differencing presented in [5]. Numerical comparisons on the efficiency of point-wise and line-wise relaxations are presented展开更多
A higher-order compact scheme on the nine point 2-D stencil is developed for the steady stream-function vorticity form of the incompressible Navier-Stokes(NS)equations in spherical polar coordinates,which was used ear...A higher-order compact scheme on the nine point 2-D stencil is developed for the steady stream-function vorticity form of the incompressible Navier-Stokes(NS)equations in spherical polar coordinates,which was used earlier only for the cartesian and cylindrical geometries.The steady,incompressible,viscous and axially symmetric flow past a sphere is used as a model problem.The non-linearity in the N-S equations is handled in a comprehensive manner avoiding complications in calculations.The scheme is combined with the multigrid method to enhance the convergence rate.The solutions are obtained over a non-uniform grid generated using the transformation r=ex while maintaining a uniform grid in the computational plane.The superiority of the higher order compact scheme is clearly illustrated in comparison with upwind scheme and defect correction technique at high Reynolds numbers by taking a large domain.This is a pioneering effort,because for the first time,the fourth order accurate solutions for the problem of viscous flow past a sphere are presented here.The drag coefficient and surface pressures are calculated and compared with available experimental and theoretical results.It is observed that these values simulated over coarser grids using the present scheme aremore accuratewhen compared to other conventional schemes.It has also been observed that the flow separation initially occurred at Re=21.展开更多
By the aid of an idea of the weighted ENO schemes, some weight-type high-resolution difference schemes with different orders of accuracy are presented in this paper by using suitable weights instead of the minmod func...By the aid of an idea of the weighted ENO schemes, some weight-type high-resolution difference schemes with different orders of accuracy are presented in this paper by using suitable weights instead of the minmod functions appearing in various TVD schemes. Numerical comparisons between the weighted schemes and the non-weighted schemes have been done for scalar equation, one-dimensional Euler equations, two-dimensional Navier-Stokes equations and parabolized Navier-Stokes equations.展开更多
This paper investigates the pseudo-compressibility method for the incompressible Navier-Stokes equations and the preconditioning technique for accelerating the time marching for stiff hyperbolic equations,and derives ...This paper investigates the pseudo-compressibility method for the incompressible Navier-Stokes equations and the preconditioning technique for accelerating the time marching for stiff hyperbolic equations,and derives and presents the eigenvalues and eigenvectors of the Jacobian matrix of the preconditioned pseudo-compressible Navier-Stokes equations in generally cur-vilinear coordinates.Based on the finite difference discretization the cored for efficiently solving incompressible flows numerically is established.The reliability of the procedures is demonstrated by the application to the inviscid flow past a circular cylinder,the laminar flow over a flat plate,and steady low Reynolds number viscous incompressible flows past a circular cylinder.It is found that the solutions to the present algorithm are in good agreement with the exact solutions or experimental data.The effects of the pseudo-compressibility factor and the parameter brought by preconditioning in convergence characteristics of the solution are investigated systematically.The results show that the upwind Roe’s scheme is superior to the second order central scheme,that the convergence rate of the pseudo-compressibility method can be effectively improved by preconditioning and that the self-adaptive pseudo-compressibility factor can modify the numerical convergence rate significantly compared to the constant form,without doing artificial tuning depending on the specific flow conditions.Further validation is also performed by numerical simulations of unsteady low Reynolds number viscous incompressible flows past a circular cylinder.The results are also found in good agreement with the existing numerical results or experimental data.展开更多
In this paper,we study the dynamical stability of a family of explicit blowup solutions of the threedimensional(3D)incompressible Navier-Stokes(NS)equations with smooth initial values,which is constructed in Guo et al...In this paper,we study the dynamical stability of a family of explicit blowup solutions of the threedimensional(3D)incompressible Navier-Stokes(NS)equations with smooth initial values,which is constructed in Guo et al.(2008).This family of solutions has finite energy in any bounded domain of R3,but unbounded energy in R3.Based on similarity coordinates,energy estimates and the Nash-Moser-H?rmander iteration scheme,we show that these solutions are asymptotically stable in the backward light-cone of the singularity.Furthermore,the result shows the existence of local energy blowup solutions to the 3D incompressible NS equations with growing data.Finally,the result also shows that in the absence of physical boundaries,the viscous vanishing limit of the solutions does not satisfy the 3D incompressible Euler equations.展开更多
According to the Liu's weighted idea, a space third-order WNND (weighted non-oscillatory, containing no free parameters, and dissipative scheme) scheme was constructed based on the stencils of second-order NND (no...According to the Liu's weighted idea, a space third-order WNND (weighted non-oscillatory, containing no free parameters, and dissipative scheme) scheme was constructed based on the stencils of second-order NND (non-oscillatory, containing no free parameters, and dissipative scheme) scheme. It was applied in solving linear-wave equation, 1D Euler equations and 3D Navier-Stokes equations. The numerical results indicate that the WNND scheme which does not increase interpolated point(compared to NND scheme) has more advantages in simulating discontinues and convergence than NND scheme. Appling WNND scheme to simulating the hypersonic flow around lift-body shows:With the AoA(angle of attack) increasing from 0° to 50°, the structure of limiting streamline of leeward surface changes from unseparating,open-separating to separating, which occurs from the combined-point (which consists of saddle and node points). The separating area of upper wing surface is increasing with the (AoA's) increasing. The topological structures of hypersonic flowfield based on the sectional flow patterns perpendicular to the body axis agree well with Zhang Hanxin's theory. Additionally, the unstable-structure phenomenon which is showed by two saddles connection along leeward symmetry line occurs at some sections when the AoA is bigger than 20°.展开更多
A high-order upwind scheme has been developed to capture the vortex wake of a helicopter rotor in the hover based on chimera grids. In this paper, an improved fifth-order weighted essentially non-oscillatory (WENO) ...A high-order upwind scheme has been developed to capture the vortex wake of a helicopter rotor in the hover based on chimera grids. In this paper, an improved fifth-order weighted essentially non-oscillatory (WENO) scheme is adopted to interpolate the higher-order left and right states across a cell interface with the Roe Riemann solver updating inviscid flux, and is compared with the monotone upwind scheme for scalar conservation laws (MUSCL). For profitably capturing the wake and enforcing the period boundary condition, the computation regions of flows are discretized by using the struc- tured chimera grids composed of a fine rotor grid and a cylindrical background grid. In the background grid, the mesh cells located in the wake regions are refined after the so- lution reaches the approximate convergence. Considering the interpolation characteristic of the WENO scheme, three layers of the hole boundary and the interpolation boundary are searched. The performance of the schemes is investigated in a transonic flow and a subsonic flow around the hovering rotor. The results reveal that the present approach has great capabilities in capturing the vortex wake with high resolution, and the WENO scheme has much lower numerical dissipation in comparison with the MUSCL scheme.展开更多
基金Supported by the National Natural Science Foundation of China(11271340,116713697)Supported by Henan Natural Science Foundation of China(132300410376)
文摘In this paper, a nonconforming triangular mixed finite element scheme with second order convergence behavior is proposed for the stationary Navier-Stokes equations.The new nonconforming triangular element is taken as approximation space for the velocity and the linear element for the pressure. The convergence analysis is presented and optimal error estimates of both broken H^1-norm and L^2-norm for velocity as well as the L^2-norm for the pressure are derived.
文摘A mixed algorithm of central and upwind difference scheme for the solution of steady/unsteady incompressible Navier-Stokes equations is presented. The algorithm is based on the method of artificial compressibility and uses a third-order flux-difference splitting technique for the convective terms and the second-order central difference for the viscous terms. The numerical flux of semi-discrete equations is computed by using the Roe approximation. Time accuracy is obtained in the numerical solutions by subiterating the equations in pseudotime for each physical time step. The algebraic turbulence model of Baldwin-Lomax is ulsed in this work. As examples, the solutions of flow through two dimensional flat, airfoil, prolate spheroid and cerebral aneurysm are computed and the results are compared with experimental data. The results show that the coefficient of pressure and skin friction are agreement with experimental data, the largest discrepancy occur in the separation region where the lagebraic turbulence model of Baldwin-Lomax could not exactly predict the flow.
基金The project supported by the China NKBRSF(2001CB409604)
文摘In this paper, a fully third-order accurate projection method for solving the incompressible Navier-Stokes equations is proposed. To construct the scheme, a continuous projection procedure is firstly presented. We then derive a sufficient condition for the continuous projection equations to be temporally third-order accurate approximations of the original Navier-Stokes equations by means of the localtruncation-error-analysis technique. The continuous projection equations are discretized temporally and spatially to third-order accuracy on the staggered grids, resulting in a fully third-order discrete projection scheme. The possibility to design higher-order projection methods is thus demonstrated in the present paper. A heuristic stability analysis is performed on this projection method showing the probability of its being stable. The stability of the present scheme is further verified through numerical tests. The third-order accuracy of the present projection method is validated by several numerical test cases.
基金This research is funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan(Grant No.AP09058430)。
文摘To apply the fictitious domain method and conduct numericalexperiments, a boundary value problem for an ordinary differential equation is considered. The results of numerical calculations for different valuesof the iterative parameter τ and the small parameter ε are presented. Astudy of the auxiliary problem of the fictitious domain method for NavierStokes equations with continuation into a fictitious subdomain by highercoefficients with a small parameter is carried out. A generalized solutionof the auxiliary problem of the fictitious domain method with continuationby higher coefficients with a small parameter is determined. After all theabove mathematical studies, a computational algorithm has been developedfor the numerical solution of the problem. Two methods were used to solvethe problem numerically. The first variant is the fictitious domain methodassociated with the modification of nonlinear terms in a fictitious subdomain.The model problem shows the effectiveness of using such a modification. Theproposed version of the method is used to solve two problems at once that arisewhile numerically solving systems of Navier-Stokes equations: the problem ofa curved boundary of an arbitrary domain and the problem of absence of aboundary condition for pressure in physical formulation of the internal flowproblem. The main advantage of this method is its universality in developmentof computer programs. The second method used calculation on a uniform gridinside the area. When numerically implementing the solution on a uniformgrid inside the domain, using this method it’s possible to accurately take intoaccount the boundaries of the curved domain and ensure the accuracy of thevalue of the function at the boundaries of the domain. Methodical calculationswere carried out, the results of numerical calculations were obtained. Whenconducting numerical experiments in both cases, quantitative and qualitativeindicators of numerical results coincide.
文摘We prove that the limits of the semi-discrete and the discrete semi-implicit Euler schemes for the 3D Navier-Stokes equations supplemented with Dirichlet boundary conditions are suitable in the sense of Scheffer [1]. This provides a new proof of the existence of suitable weak solutions, first established by Caffarelli, Kohn and Nirenberg [2]. Our results are similar to the main result in [3]. We also present some additional remarks and open questions on suitable solutions.
基金funded by the research project STiMulUs,ERC Grant agreement no.278267Financial support has also been provided by the Italian Ministry of Education,University and Research(MIUR)in the frame of the Departments of Excellence Initiative 2018-2022 attributed to DICAM of the University of Trento(Grant L.232/2016)the PRIN2017 project.The authors have also received funding from the University of Trento via the Strategic Initiative Modeling and Simulation.
文摘A new high-order accurate staggered semi-implicit space-time discontinuous Galerkin(DG)method is presented for the simulation of viscous incompressible flows on unstructured triangular grids in two space dimensions.The staggered DG scheme defines the discrete pressure on the primal triangular mesh,while the discrete velocity is defined on a staggered edge-based dual quadrilateral mesh.In this paper,a new pair of equal-order-interpolation velocity-pressure finite elements is proposed.On the primary triangular mesh(the pressure elements),the basis functions are piecewise polynomials of degree N and are allowed to jump on the boundaries of each triangle.On the dual mesh instead(the velocity elements),the basis functions consist in the union of piecewise polynomials of degree N on the two subtriangles that compose each quadrilateral and are allowed to jump only on the dual element boundaries,while they are continuous inside.In other words,the basis functions on the dual mesh arc built by continuous finite elements on the subtriangles.This choice allows the construction of an efficient,quadrature-free and memory saving algorithm.In our coupled space-time pressure correction formulation for the incompressible Navier-Stokes equations,the arbitrary high order of accuracy in time is achieved through tire use of time-dependent test and basis functions,in combination with simple and efficient Picard iterations.Several numerical tests on classical benchmarks confirm that the proposed method outperforms existing staggered semi-implicit space-time DG schemes,not only from a computer memory point of view,but also concerning the computational time.
基金supported by the National Natural Science Foundation of China (51176003)
文摘The previously developed single-sweep parabolized Navier-Stokes (SSPNS) space marching code for ideal gas flows has been extended to compute chemically nonequilibrium flows. In the code, the strongly coupled set of gas dynamics, species conservation, and turbulence equations is integrated with the implicit lower-upper symmetric GaussSeidel (LU-SGS) method in the streamwise direction in a space marching manner. The AUSMPW+ scheme is used to calculate the inviscid fluxes in the crossflow direction, while the conventional central scheme for the viscous fluxes. The k-g two-equation turbulence model is used. The revised SSPNS code is validated by computing the Burrows-Kurkov non-premixed H2/air supersonic combustion flows, premixed H2/air hypersonic combustion flows in a three-dimensional duct with a 15° compression ramp, as well as the hypersonic laminar chemically nonequilibrium air flows around two 10° half-angle cones. The results of these calculations are in good agreement with those of experiments, NASA UPS or Prabhu's PNS codes. It can be concluded that the SSPNS code is highly efficient for steady supersonic/ hypersonic chemically reaction flows when there is no large streamwise separation.
文摘In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.
基金the National Natural Science Foundation of China(Grant Nos.10471100,40437017,and 60573158)Beijing Jiaotong University Science and Technology Foundation
文摘The proper orthogonal decomposition(POD)and the singular value decomposition(SVD) are used to study the finite difference scheme(FDS)for the nonstationary Navier-Stokes equations. Ensembles of data are compiled from the transient solutions computed from the discrete equation system derived from the FDS for the nonstationary Navier-Stokes equations.The optimal orthogonal bases are reconstructed by the elements of the ensemble with POD and SVD.Combining the above procedures with a Galerkin projection approach yields a new optimizing FDS model with lower dimensions and a high accuracy for the nonstationary Navier-Stokes equations.The errors between POD approximate solutions and FDS solutions are analyzed.It is shown by considering the results obtained for numerical simulations of cavity flows that the error between POD approximate solution and FDS solution is consistent with theoretical results.Moreover,it is also shown that this validates the feasibility and efficiency of POD method.
基金This work was supported by the National Natural science Founda-tion of China under Grant(No.11601013,91530325)Foundational Research of Civil Aircraft(No.MJ-F-2012-04)。
文摘The inconsistent accuracy and truncation error in the treatment of boundary usually leads to performance defects,such as decreased accuracy and even numerical instability,of the entire computational method,especially for higher order methods.In this work,we construct a consistent fourth-order compact finite difference scheme for solving two-dimensional incompressible Navier-Stokes(N-S)equations.In the pro-posed method,the main truncation error term of the boundary scheme is kept the same as that of the interior compact finite difference scheme.With such a feature,the nu-merical stability and accuracy of the entire computation can be maintained the same as the interior compact finite difference scheme.Numerical examples show the effec-tiveness and accuracy of the present consistent compact high order scheme in L^(∞).Its application to two dimensional lid-driven cavity flow problem further exhibits that un-der the same condition,the computed solution with the present scheme is much close to the benchmark in comparison to those from the 4^(th)order explicit scheme.The compact finite difference method equipped with the present consistent boundary technique im-proves much the stability of the whole computation and shows its potential application to incompressible flow of high Reynolds number.
基金support provided by NCSU new faculty start-up fundNCSU Faculty Research and Development Fund.
文摘A discontinuous Galerkin Method based on a Bhatnagar-Gross-Krook(BGK)formulation is presented for the solution of the compressible Navier-Stokes equations on arbitrary grids.The idea behind this approach is to combine the robustness of the BGK scheme with the accuracy of the DG methods in an effort to develop a more accurate,efficient,and robust method for numerical simulations of viscous flows in a wide range of flow regimes.Unlike the traditional discontinuous Galerkin methods,where a Local Discontinuous Galerkin(LDG)formulation is usually used to discretize the viscous fluxes in the Navier-Stokes equations,this DG method uses a BGK scheme to compute the fluxes which not only couples the convective and dissipative terms together,but also includes both discontinuous and continuous representation in the flux evaluation at a cell interface through a simple hybrid gas distribution function.The developed method is used to compute a variety of viscous flow problems on arbitrary grids.The numerical results obtained by this BGKDG method are extremely promising and encouraging in terms of both accuracy and robustness,indicating its ability and potential to become not just a competitive but simply a superior approach than the current available numerical methods.
基金supported by National Natural Science Foundation of China(No.11671369)the Doctoral Starting Foundation of Zhengzhou University of Aeronautics(No.63020390).
文摘In this paper,the unconditional error estimates are presented for the time-dependent Navier-Stokes equations by the bilinear-constant scheme.The corresponding optimal error estimates for the velocity and the pressure are derived unconditionally,while the previous works require certain time-step restrictions.The analysis is based on an iterated time-discrete system,with which the error function is split into a temporal error and a spatial error.The τ-independent(τ is the time stepsize)error estimate between the numerical solution and the solution of the time-discrete system is proven by a rigorous analysis,which implies that the numerical solution in L^(∞)-norm is bounded.Thus optimal error estimates can be obtained in a traditional way.Numerical results are provided to confirm the theoretical analysis.
基金supported by the National Natural Science Foundation of China under Grant No.11271363。
文摘This paper constructs a strongly-consistent explicit finite difference scheme for 3D constant viscosity incompressible Navier-Stokes equations by using of symbolic algebraic computation.The difference scheme is space second order accurate and temporal first order accurate. It is proved that difference Grobner basis algorithm is correct. By using of difference Grobner basis computation method, an element in Gr?bner basis of difference scheme for momentum equations is a difference scheme for pressure Poisson equation. The authors find that the truncation errors expressions of difference scheme is consistent with continuous errors functions about modified version of above difference equation. The authors prove that, for strongly consistent difference scheme, each element in the difference Grobner basis of such difference scheme always approximates a differential equation which vanishes on the analytic solutions of Navier-Stokes equations. To prove the strongly-consistency of this difference scheme, the differential Thomas decomposition theorem for nonlinear differential equations and difference Grobner basis theorems for difference equations are applied. Numerical test certifies that strongly-consistent difference scheme is effective.
文摘We extend the SCGS smoothing procedure (Symmetrical Collective Gauss-Seidel relaxation) proposed by S. P. Vanka[4], for multigrid solvers of the steady viscous incompressible Navier-Stokes equations, to corresponding line-wise versions. The resulting relaxation schemes are integrated into the multigrid solver based on second-order upwind differencing presented in [5]. Numerical comparisons on the efficiency of point-wise and line-wise relaxations are presented
文摘A higher-order compact scheme on the nine point 2-D stencil is developed for the steady stream-function vorticity form of the incompressible Navier-Stokes(NS)equations in spherical polar coordinates,which was used earlier only for the cartesian and cylindrical geometries.The steady,incompressible,viscous and axially symmetric flow past a sphere is used as a model problem.The non-linearity in the N-S equations is handled in a comprehensive manner avoiding complications in calculations.The scheme is combined with the multigrid method to enhance the convergence rate.The solutions are obtained over a non-uniform grid generated using the transformation r=ex while maintaining a uniform grid in the computational plane.The superiority of the higher order compact scheme is clearly illustrated in comparison with upwind scheme and defect correction technique at high Reynolds numbers by taking a large domain.This is a pioneering effort,because for the first time,the fourth order accurate solutions for the problem of viscous flow past a sphere are presented here.The drag coefficient and surface pressures are calculated and compared with available experimental and theoretical results.It is observed that these values simulated over coarser grids using the present scheme aremore accuratewhen compared to other conventional schemes.It has also been observed that the flow separation initially occurred at Re=21.
基金The project supported by the National Natural Science Foundation of China (19582007) Partly by State Key Laboratory of Scientific/Engineering Computing
文摘By the aid of an idea of the weighted ENO schemes, some weight-type high-resolution difference schemes with different orders of accuracy are presented in this paper by using suitable weights instead of the minmod functions appearing in various TVD schemes. Numerical comparisons between the weighted schemes and the non-weighted schemes have been done for scalar equation, one-dimensional Euler equations, two-dimensional Navier-Stokes equations and parabolized Navier-Stokes equations.
基金supported by the National Natural Science Foundation of China (No.50836006)
文摘This paper investigates the pseudo-compressibility method for the incompressible Navier-Stokes equations and the preconditioning technique for accelerating the time marching for stiff hyperbolic equations,and derives and presents the eigenvalues and eigenvectors of the Jacobian matrix of the preconditioned pseudo-compressible Navier-Stokes equations in generally cur-vilinear coordinates.Based on the finite difference discretization the cored for efficiently solving incompressible flows numerically is established.The reliability of the procedures is demonstrated by the application to the inviscid flow past a circular cylinder,the laminar flow over a flat plate,and steady low Reynolds number viscous incompressible flows past a circular cylinder.It is found that the solutions to the present algorithm are in good agreement with the exact solutions or experimental data.The effects of the pseudo-compressibility factor and the parameter brought by preconditioning in convergence characteristics of the solution are investigated systematically.The results show that the upwind Roe’s scheme is superior to the second order central scheme,that the convergence rate of the pseudo-compressibility method can be effectively improved by preconditioning and that the self-adaptive pseudo-compressibility factor can modify the numerical convergence rate significantly compared to the constant form,without doing artificial tuning depending on the specific flow conditions.Further validation is also performed by numerical simulations of unsteady low Reynolds number viscous incompressible flows past a circular cylinder.The results are also found in good agreement with the existing numerical results or experimental data.
基金supported by National Natural Science Foundation of China(Grant Nos.12231016 and 12071391)Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515010860)。
文摘In this paper,we study the dynamical stability of a family of explicit blowup solutions of the threedimensional(3D)incompressible Navier-Stokes(NS)equations with smooth initial values,which is constructed in Guo et al.(2008).This family of solutions has finite energy in any bounded domain of R3,but unbounded energy in R3.Based on similarity coordinates,energy estimates and the Nash-Moser-H?rmander iteration scheme,we show that these solutions are asymptotically stable in the backward light-cone of the singularity.Furthermore,the result shows the existence of local energy blowup solutions to the 3D incompressible NS equations with growing data.Finally,the result also shows that in the absence of physical boundaries,the viscous vanishing limit of the solutions does not satisfy the 3D incompressible Euler equations.
文摘According to the Liu's weighted idea, a space third-order WNND (weighted non-oscillatory, containing no free parameters, and dissipative scheme) scheme was constructed based on the stencils of second-order NND (non-oscillatory, containing no free parameters, and dissipative scheme) scheme. It was applied in solving linear-wave equation, 1D Euler equations and 3D Navier-Stokes equations. The numerical results indicate that the WNND scheme which does not increase interpolated point(compared to NND scheme) has more advantages in simulating discontinues and convergence than NND scheme. Appling WNND scheme to simulating the hypersonic flow around lift-body shows:With the AoA(angle of attack) increasing from 0° to 50°, the structure of limiting streamline of leeward surface changes from unseparating,open-separating to separating, which occurs from the combined-point (which consists of saddle and node points). The separating area of upper wing surface is increasing with the (AoA's) increasing. The topological structures of hypersonic flowfield based on the sectional flow patterns perpendicular to the body axis agree well with Zhang Hanxin's theory. Additionally, the unstable-structure phenomenon which is showed by two saddles connection along leeward symmetry line occurs at some sections when the AoA is bigger than 20°.
基金supported by the National Natural Science Foundation of China(No.10802046)
文摘A high-order upwind scheme has been developed to capture the vortex wake of a helicopter rotor in the hover based on chimera grids. In this paper, an improved fifth-order weighted essentially non-oscillatory (WENO) scheme is adopted to interpolate the higher-order left and right states across a cell interface with the Roe Riemann solver updating inviscid flux, and is compared with the monotone upwind scheme for scalar conservation laws (MUSCL). For profitably capturing the wake and enforcing the period boundary condition, the computation regions of flows are discretized by using the struc- tured chimera grids composed of a fine rotor grid and a cylindrical background grid. In the background grid, the mesh cells located in the wake regions are refined after the so- lution reaches the approximate convergence. Considering the interpolation characteristic of the WENO scheme, three layers of the hole boundary and the interpolation boundary are searched. The performance of the schemes is investigated in a transonic flow and a subsonic flow around the hovering rotor. The results reveal that the present approach has great capabilities in capturing the vortex wake with high resolution, and the WENO scheme has much lower numerical dissipation in comparison with the MUSCL scheme.