Aiming at overcoming the strength-ductility trade-off in structural Ti-alloys,a new family of TRIP/TWIP Ti-alloys was developed in the past decade(TWIP:twinning-induced plasticity;TRIP:transformationinduced plasticity...Aiming at overcoming the strength-ductility trade-off in structural Ti-alloys,a new family of TRIP/TWIP Ti-alloys was developed in the past decade(TWIP:twinning-induced plasticity;TRIP:transformationinduced plasticity).Herein,we study the tunable nature of deformation mechanisms with various TWIP and TRIP contributions by fine adjustment of the Zr content on ternary Ti-12 Mo-xZr(x=3,6,10)alloys.The microstructure and deformation mechanisms of the Ti-Mo-Zr alloys are explored by using in-situ electron backscatter diffraction(EBSD)and transmission electron microscopy(TEM).The results show that a transition of the dominant deformation mode occurred,going from TRIP to TWIP major mechanism with increasing Zr content.In the Ti-12 Mo-3 Zr alloy,the stress-induced martensitic transformation(SIM)is the major deformation mode which accommodates the plastic flow.Regarding the Ti-12 Mo-6 Zr alloy,the combined deformation twinning(DT)and SIM modes both contribute to the overall plasticity with enhanced strain-hardening rate and subsequent large uniform ductility.Further increase of the Zr content in Ti-12 Mo-10 Zr alloy leads to an improved yield stress involving single DT mode as a dominant deformation mechanism throughout the plastic regime.In the present work,a set of comprehensive in-situ and ex-situ microstructural investigations clarify the evolution of deformation microstructures during tensile loading and unloading processes.展开更多
The deformation mode of{332}<113>twinning(hereafter called 332T)has often been observed under the plastic flow in metastableβtitanium alloys with body-centered cubic(BCC)structure,which contributes to improving...The deformation mode of{332}<113>twinning(hereafter called 332T)has often been observed under the plastic flow in metastableβtitanium alloys with body-centered cubic(BCC)structure,which contributes to improving the mechanical performance.Herein,we report a structure of compressive deformation-induced primary 332T with hierarchical and/or heterogeneous composite sub-structure in a Twin-Induced Plasticity(TWIP)βTi-alloy under uniaxial compression.The detailed structural characterization after compressive deformation revealed that the sub-structure,including secondary 332T and secondary{112}<111>twinning,formed inside the 332T structure,which constitutes a hierarchical and/or heterogeneous structure at micro-and nano-scale and consequently contributes to the high strength,large ductility and enhanced strain-hardening behavior.展开更多
Mechanical properties, microstructure and texture evolution were studied in two tensile-deformed high manganese TWIP steels at different temperatures. Special attention was paid to the effects of deformation tempera- ...Mechanical properties, microstructure and texture evolution were studied in two tensile-deformed high manganese TWIP steels at different temperatures. Special attention was paid to the effects of deformation tempera- ture and grain orientation on twinning behavior. The results showed that, at --70 ℃ and at room temperature, both twins and hexagonal martensite were found in a lower manganese steel of 26Mn. With deformation temperature ris- ing, twins became less and they disappeared at 500 ℃. Strong 〈111〉 texture appeared at 300 ℃, while it weakened at 500 ℃ due to the low strain rate and higher stacking fault energy. EBSD measurement revealed the dependence of deformation twinning on grain orientation at all test temperatures.展开更多
基金supported by National Natural Science foundation of China(Grant No.51601216 and 51901193)China Postdoctoral Science Foundation(Grant No.2018M632414)+4 种基金Fund of State Key Lab of Advanced Metals and Materials,University of Science and Technology Beijing(Grant No.2019-ZD03)Fundamental Research Funds for the Central Universities(Grant No.2017XKQY009)Funds of Industry-University-Research Cooperation in Jiangsu Province(Grand No.BY2018075)Key Research and Development Program of Shaanxi(Grant No.2019GY-151)sponsored by China Scholarship Council。
文摘Aiming at overcoming the strength-ductility trade-off in structural Ti-alloys,a new family of TRIP/TWIP Ti-alloys was developed in the past decade(TWIP:twinning-induced plasticity;TRIP:transformationinduced plasticity).Herein,we study the tunable nature of deformation mechanisms with various TWIP and TRIP contributions by fine adjustment of the Zr content on ternary Ti-12 Mo-xZr(x=3,6,10)alloys.The microstructure and deformation mechanisms of the Ti-Mo-Zr alloys are explored by using in-situ electron backscatter diffraction(EBSD)and transmission electron microscopy(TEM).The results show that a transition of the dominant deformation mode occurred,going from TRIP to TWIP major mechanism with increasing Zr content.In the Ti-12 Mo-3 Zr alloy,the stress-induced martensitic transformation(SIM)is the major deformation mode which accommodates the plastic flow.Regarding the Ti-12 Mo-6 Zr alloy,the combined deformation twinning(DT)and SIM modes both contribute to the overall plasticity with enhanced strain-hardening rate and subsequent large uniform ductility.Further increase of the Zr content in Ti-12 Mo-10 Zr alloy leads to an improved yield stress involving single DT mode as a dominant deformation mechanism throughout the plastic regime.In the present work,a set of comprehensive in-situ and ex-situ microstructural investigations clarify the evolution of deformation microstructures during tensile loading and unloading processes.
基金supported by the Fund of State Key Lab of Advanced Metals and Materials,University of Science and Technology Beijing(No.2019-ZD03)the Fund of the State Key Laboratory of Solidification Processing,Northwestern Polytechnical University(No.SKLSP201501)+2 种基金the National Natural Science Foundation of China(Nos.51601216 and 51901193)the Fundamental Research Funds for the Central Universities(Nos.2017XKQY009 and 2018GF13)sponsored by China Scholarship Council。
文摘The deformation mode of{332}<113>twinning(hereafter called 332T)has often been observed under the plastic flow in metastableβtitanium alloys with body-centered cubic(BCC)structure,which contributes to improving the mechanical performance.Herein,we report a structure of compressive deformation-induced primary 332T with hierarchical and/or heterogeneous composite sub-structure in a Twin-Induced Plasticity(TWIP)βTi-alloy under uniaxial compression.The detailed structural characterization after compressive deformation revealed that the sub-structure,including secondary 332T and secondary{112}<111>twinning,formed inside the 332T structure,which constitutes a hierarchical and/or heterogeneous structure at micro-and nano-scale and consequently contributes to the high strength,large ductility and enhanced strain-hardening behavior.
基金Item Sponsored by National Natural Science Foundation of China (50771019)
文摘Mechanical properties, microstructure and texture evolution were studied in two tensile-deformed high manganese TWIP steels at different temperatures. Special attention was paid to the effects of deformation tempera- ture and grain orientation on twinning behavior. The results showed that, at --70 ℃ and at room temperature, both twins and hexagonal martensite were found in a lower manganese steel of 26Mn. With deformation temperature ris- ing, twins became less and they disappeared at 500 ℃. Strong 〈111〉 texture appeared at 300 ℃, while it weakened at 500 ℃ due to the low strain rate and higher stacking fault energy. EBSD measurement revealed the dependence of deformation twinning on grain orientation at all test temperatures.