期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
自监督深度学习的心脏磁共振图像配准算法
1
作者 刘子兴 廉钰 +1 位作者 李汉军 唐晓英 《中国医疗设备》 2024年第11期27-32,38,共7页
目的通过使用合成图像的方法解决在配准过程中缺少金标准的问题,并应用深度学习算法进行心脏T_(1)定量图配准。方法首先利用T_(1)加权图像的先验信息合成无运动的参考图像;其次使用DeepIPMCNet卷积神经网络来学习和配准层内运动。另一... 目的通过使用合成图像的方法解决在配准过程中缺少金标准的问题,并应用深度学习算法进行心脏T_(1)定量图配准。方法首先利用T_(1)加权图像的先验信息合成无运动的参考图像;其次使用DeepIPMCNet卷积神经网络来学习和配准层内运动。另一个网络DeepTPMDNet用于检测和消除穿层运动。使用在自由呼吸条件下采集的STONE序列T_(1)映射数据集进行训练、验证和测试,以验证本文方法的有效性。通过T_(1)标准差和SD map标准差来评估性能。结果在配准后,左心室和室间隔的Dice系数、T_(1)标准差和SD map标准差均得到了改善(通过DeepIPMCNet,左心室的Dice系数从0.88提高到0.90,室间隔的T_(1)标准差从121.91 ms降低到86.99 ms,SD map标准差从46.49 ms降低到36.53 ms;通过DeepTPMCNet,左心室的Dice系数从0.74提高到0.93,室间隔的T_(1)标准差从192.02 ms降低到114.37 ms,SD map标准差从93.41 ms降低到50.53 ms),差异均有统计学意义(P<0.001)。结论本研究提出的深度学习方法可有效缓解心脏和呼吸运动对心脏T_(1)定量图的影响。 展开更多
关键词 心脏磁共振(CMR) t_(1)定量 配准算法 自监督深度学习 卷积神经网络 DeepIPMCNet DeeptPMDNet
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部