期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
Thermal stability and high-temperature shape memory characteristics of Ti-20Zr-10Ta alloy 被引量:1
1
作者 郑晓航 隋解和 +2 位作者 张欣 杨哲一 蔡伟 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第1期466-469,共4页
The microstructure, martensite transformation behavior, thermal stability and shape memory behavior of Ti–20Zr– 10Ta high temperature shape memory alloy were investigated. The Ti–20Zr–10Ta alloy exhibited a revers... The microstructure, martensite transformation behavior, thermal stability and shape memory behavior of Ti–20Zr– 10Ta high temperature shape memory alloy were investigated. The Ti–20Zr–10Ta alloy exhibited a reversible transformation with the high martensite transformation temperature of 500oC and good thermal stability. The alloy displayed the elongation of 15% and a maximum recovery stain of 5.5% with 8% pre-strain. 展开更多
关键词 Ti–Zr–ta alloy martensite transformation high temperature shape memory effect thermal stabil-ity
下载PDF
Energetics of He and H Atoms in W–Ta Alloys: First-Principle Calculations
2
作者 Chu-Bin Wan Su-Ye Yu Xin Ju 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第4期95-97,共3页
Properties of various defects of He and H atoms in W-Ta alloys are investigated based on density functional theory. The tetrahedral interstitial site is the most configured site for self-interstitial He and H in W and... Properties of various defects of He and H atoms in W-Ta alloys are investigated based on density functional theory. The tetrahedral interstitial site is the most configured site for self-interstitial He and H in W and W-Ta alloys. Only a single He atom favors a substitutional site in the presence of a nearby vacancy. However, in the coexistence of He and H atoms in the presence of the vacancy, the single H atom favors the tetrahedral interstitial site(TIS) closest to the vacancy, and the He atom takes the vacancy center. The addition of Ta can reduce the formation energy of TIS He or H defects. The substituted Ta affects the charge density distribution in the vicinity of the He atom and decreases the valence electron density of the H atoms. A strong hybridization of the H s states and the nearest W d state s exists in W(53)He1 H1 structure. The sequence of the He p projected DOS at the Fermi energy level is in agreement with the order of the formation energy of the He-H pair in the systems. 展开更多
关键词 ta alloys Energetics of He and H Atoms in W First-Principle Calculations
下载PDF
Surface Modification on Ti-30Ta Alloy for Biomedical Application
3
作者 Patricia Capellato Nicholas A.Riedel +3 位作者 John D.Williams Joao P.B.Machado Ketul C.Popat Ana P.R.Alves Claro 《Engineering(科研)》 2013年第9期707-713,共7页
Titanium and titanium alloys are currently being used for clinical biomedical applications due to their high strength, corrosion resistance and elastic modulus. The Ti-30Ta alloy has gotten extensive application as th... Titanium and titanium alloys are currently being used for clinical biomedical applications due to their high strength, corrosion resistance and elastic modulus. The Ti-30Ta alloy has gotten extensive application as the important biomedical materials. The substrate surface of the Ti-30Ta alloy was altered either by chemical or topographical surface modification. The biocompatibility of an implant is closely related to its surface properties. Thus surface modification is one of effective methods for improving the biocompatibility of implants. The development status of biomedical materials has been summarized firstly, the biomedical application. In this study Ti-30Ta alloy surface was investigate as-casting (Group 1) modified with alkaline and heat-treatments in NaOH with 1.5M at 60°C for 24 hrs (Group 2), alkaline and heat-treatments with SBF-coatings by immersion in NaOH and SBFX5 for 24hrs (Group 3), anodization process was performed in an electrolyte solution containing HF (48%) and H2SO4 (98%) with the addition of 5% dimethyl sulfoxide (DMSO) 35V for 40 min (Group 4) and ion beam etching with 1200 eV ions with a beam current of 200 mA for a 3 hrs etch (Group 5). SEM was used to investigate the topography, EDS the chemical composition, and surface energy was evaluate with water contact angle measurement. SEM results show different structure on the surface for each group. EDS spectra identified similarity on Group 1, 4 and 5. The results indicate for group 2 an amorphous sodium tantalate hydrogel layer on the substrate surface and for group 3 the apatite nucleation on substrate surface. The Group 4 shows unorganized and vertically nanotubes and Group 5 shows a little alteration in the topography on the substrate surfaces. Overall the contact angle shows Group 5 the most hydrophobic and Group 4 the most hydrophilic. The study indicates Group 3 and 4 with potential for biomedical application. The next step the authors need to spend more time to study group 3 and 4 in the biomedical sciences. 展开更多
关键词 BIOCOMPATIBILITY Ti-30ta alloy Alkali Treatment Heat Treatment Simulated Body Fluid Anodization Process Ion Beam Etching
下载PDF
Microstructure Evolution and Mechanical Properties of Ti-25Ta Alloy Fabricated by Selective Laser Melting and Hot Isostatic Pressing
4
作者 Pu Yunna Zhao Dewei +6 位作者 Liu Binbin Shi Qi Li Junlei Tan Chong Shen Zhengyan Xie Huanwen Liu Xin 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2024年第8期2123-2130,共8页
Ti-25Ta alloy samples were fabricated by selective laser melting,and the relative density,microstructure,microhardness and tensile properties of the as-built and hot isostatic pressing(HIP)-prepared samples were chara... Ti-25Ta alloy samples were fabricated by selective laser melting,and the relative density,microstructure,microhardness and tensile properties of the as-built and hot isostatic pressing(HIP)-prepared samples were characterized.Results show that the track width and penetration depth are increased with the increase in laser power,and the surface morphology is improved.The maximum relative density improves from 95.31%to 98.01%after HIP process.Moreover,the microstructure is refined into the lath martensite and cellular grains with the increase in input power.After densification treatment,the subgrain coalescence occurs and high angle grain boundaries are formed.In addition,HIP process stabilizes the microhardness and enhances the tensile strength and elongation. 展开更多
关键词 Ti-25ta alloy selective laser melting hot isostatic pressing
原文传递
Dynamic globularization kinetics during hot working of TA15 titanium alloy with colony microstructure 被引量:20
5
作者 吴成宝 杨合 +1 位作者 樊晓光 孙志超 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第9期1963-1969,共7页
The dynamic globularization kinetics of TA15(Ti-6Al-2Zr-1Mo-1V) titanium alloy with a colony α microstructure during deformation at temperature range of 860-940 ℃ and strain rate range of 0.01-10 s-1 was quantitat... The dynamic globularization kinetics of TA15(Ti-6Al-2Zr-1Mo-1V) titanium alloy with a colony α microstructure during deformation at temperature range of 860-940 ℃ and strain rate range of 0.01-10 s-1 was quantitatively studied through isothermal compression tests.It is found that the dynamic globularization kinetics and the kinetics rate of TA15 are sensitive to deformation parameters.The dynamic globularized fraction increases with increasing strain,temperature but decreasing strain rate.The variation of globularized fraction with strain approximately follows an Avrami type equation.Using the Avrami type equation,the initiation and completion strains for dynamic globularization of TA15 were predicted to be 0.34-0.59 and 3.40-6.80.The kinetics rate of dynamic globularization increases with strain at first,then decreases.The peak value of kinetics rate,which corresponds to 20%-33% globularization fraction,increases with increasing temperature and decreasing strain rate. 展开更多
关键词 ta15 titanium alloy dynamic globularization KINETICS STRAIN kinetics rate
下载PDF
Residual elastic stress strain field and geometrically necessary dislocation density distribution around nano-indentation in TA15 titanium alloy 被引量:7
6
作者 何东 朱景川 +3 位作者 来忠红 刘勇 杨夏炜 农智升 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期7-13,共7页
Nanoindentation and high resolution electron backscatter diffraction(EBSD) were combined to examine the elastic modulus and hardness of α and β phases,anisotropy in residual elastic stress strain fields and distri... Nanoindentation and high resolution electron backscatter diffraction(EBSD) were combined to examine the elastic modulus and hardness of α and β phases,anisotropy in residual elastic stress strain fields and distributions of geometrically necessary dislocation(GND) density around the indentations within TA15 titanium alloy.The nano-indention tests were conducted on α and β phases,respectively.The residual stress strain fields surrounding the indentation were calculated through crosscorrelation method from recorded patterns.The GND density distribution around the indentation was calculated based on the strain gradient theories to reveal the micro-mechanism of plastic deformation.The results indicate that the elastic modulus and hardness for α p hase are 129.05 GPas and 6.44 GPa,while for β phase,their values are 109.80 GPa and 4.29 GPa,respectively.The residual Mises stress distribution around the indentation is relatively heterogeneous and significantly influenced by neighboring soft β phase.The region with low residual stress around the indentation is accompanied with markedly high a type and prismatic-GND density. 展开更多
关键词 nano-hardness stress strain fields geometrically necessary dislocation NANOINDENtaTION electron backscatter diffraction ta15 titanium alloy
下载PDF
Microstructure and defect of titanium alloy electron beam deep penetration welded joint 被引量:8
7
作者 张秉刚 石铭霄 +1 位作者 陈国庆 冯吉才 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2633-2637,共5页
The microstructure, phase composition and cold shut defect of thick titanium alloy electron beam welded joint were studied. The results showed that the microstructure of weld zone was composed of α′ phase; the heat ... The microstructure, phase composition and cold shut defect of thick titanium alloy electron beam welded joint were studied. The results showed that the microstructure of weld zone was composed of α′ phase; the heat affected zone was divided into fine-grained zone and coarse-grained zone, the microstructure of fine-grained zone was primary α phase + β phase + equiaxed α phase, and the microstructure of coarse-grained zone was primary α phase + acicular α′ phase; the microstructure of base metal zone basically consisted of primary α phase, and a small amount of residual β phase sprinkled. The forming. reason of cold shut was analyzed, and the precaution of cold shut was proposed. 展开更多
关键词 ta15 titanium alloy electron beam welding MICROSTRUCTURE phase composition cold shut defect weld zone heataffected zone
下载PDF
Simulated and experimental investigation on discontinuous dynamic recrystallization of a near-α TA15 titanium alloy during isothermal hot compression in βsingle-phase field 被引量:5
8
作者 武川 杨合 李宏伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第6期1819-1829,共11页
A cellular automaton(CA) modeling of discontinuous dynamic recrystallization(DDRX) of a near-α Ti-6Al-2Zr-1Mo-1V(TA15) isothermally compressed in the β single phase field was presented.In the CA model,nucleati... A cellular automaton(CA) modeling of discontinuous dynamic recrystallization(DDRX) of a near-α Ti-6Al-2Zr-1Mo-1V(TA15) isothermally compressed in the β single phase field was presented.In the CA model,nucleation of the β-DDRX and the growth of recrystallized grains(re-grains) were considered and visibly simulated by the CA model.The driving force of re-grain growth was provided by dislocation density accumulating around the grain boundaries.To verify the CA model,the predicted flow stress by the CA model was compared with the experimental data.The comparison showed that the average relative errors were10.2%,10.1%and 6%,respectively,at 1.0,0.1 and 0.01 s^-1 of 1020 ℃,and were 10.2%,11.35%and 7.5%,respectively,at 1.0,0.1and 0.01 s^-1 of 1050 ℃.The CA model was further applied to predicting the average growth rate,average re-grain size and recrystallization kinetics.The simulated results showed that the average growth rate increases with the increasing strain rate or temperature,while the re-grain size increases with the decreasing strain rate;the volume fraction of recrystallization decreases with the increasing strain rate or decreasing temperature. 展开更多
关键词 discontinuous dynamic recrystallization cellular automaton dislocation density evolution recrystallization kinetics ta15 titanium alloy
下载PDF
Morphology development of elongated α phases in hot working of large-scale titanium alloy plate 被引量:3
9
作者 樊晓光 杨合 +1 位作者 高鹏飞 严思梁 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3508-3516,共9页
The role of subtransus hot working on microstructure morphology of TA15 titanium alloy plate with elongatedαphases was studied by quantitative metallography on different sections. The results show that the microstruc... The role of subtransus hot working on microstructure morphology of TA15 titanium alloy plate with elongatedαphases was studied by quantitative metallography on different sections. The results show that the microstructure morphology is mainly affected by loading direction. When the sample is compressed along normal direction, microstructure on the section vertical to normal direction has equiaxed primaryαphase but microstructure on the section vertical to rolling direction has strip primaryαphase with long axis along tangential direction. When the sample is compressed along rolling direction, microstructure on the section vertical to normal direction has strip primaryαphase elongated along tangential direction but microstructure on the section vertical to rolling direction consists of strip and irregular broad-band primaryαphase. The strip primaryαphase aspect ratio is smaller at lower temperature due to the dynamic break-down ofαphase. The difference on primaryαphase aspect ratio between different sections decreases after compression along distinct directions in two loading passes, suggesting the improvement of equiaxity of primaryαphase. 展开更多
关键词 microstructure morphology ta15 titanium alloy elongatedαphases subtransus hot working
下载PDF
Relationship among microstructure,mechanical properties and texture of TA32 titanium alloy sheets during hot tensile deformation 被引量:13
10
作者 Rong-lei FAN Yong WU +1 位作者 Ming-he CHEN Lan-sheng XIE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第4期928-943,共16页
The relationship among microstructure,mechanical properties and texture of TA32 titanium alloy sheets during hot tensile deformation at 800℃was investigated.In the test,the original sheet exhibited relatively low flo... The relationship among microstructure,mechanical properties and texture of TA32 titanium alloy sheets during hot tensile deformation at 800℃was investigated.In the test,the original sheet exhibited relatively low flow stress and sound plasticity,and increasing the heat treatment temperature resulted in an increased ultimate tensile strength(UTS)and a decreased elongation(EL).The deformation mechanism of TA32 alloy was dominated by high angle grain boundaries sliding and coordinated by dislocation motion.The coarsening of grains and the annihilation of dislocations in heat-treated specimens weakened the deformation ability of material,which led to the increase in flow stress.Based on the high-temperature creep equation,the quantitative relationship between microstructure and flow stress was established.The grain size exponent andαphase strength constant of TA32 alloy were calculated to be 1.57 and 549.58 MPa,respectively.The flow stress was accurately predicted by combining with the corresponding phase volume fraction and grain size.Besides,the deformation behavior of TA32 alloy was also dependent on the orientation of predominantαphase,and the main slip mode was the activation of prismaticslip system.The decrease of near prism-oriented texture in heat-treated specimens resulted in the enhancement of strength of the material. 展开更多
关键词 ta32 titanium alloy sheets hot tensile deformation microstructure evolution mechanical properties TEXTURE
下载PDF
Shape controlling and property optimization of TA32 titanium alloy thin-walled part prepared by hot forming 被引量:9
11
作者 Yong WU Rong-lei FAN +1 位作者 Zhong-huan QIN Ming-he CHEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第8期2336-2357,共22页
The hot flow behaviors,microstructure evolution and fractographs were studied to optimize the hot forming process of the TA32 titanium alloy thin-walled part.A set of microstructure-based constitutive equations were d... The hot flow behaviors,microstructure evolution and fractographs were studied to optimize the hot forming process of the TA32 titanium alloy thin-walled part.A set of microstructure-based constitutive equations were developed based on the experimental data,which described the relationships among the hot flow stresses and the evolution of phase volume fraction,dislocation density,grain size and damage.The constitutive model was imported into ABAQUS 6.14 to simulate the hot forming process for a typical thin-walled part.The effective strain,dislocation density and damage distribution as well as forming defects of formed parts under different process parameters were predicted.A qualified part without wrinkling and fracture defects was produced at a loading speed of 5 mm/s at 800℃ by the modified blank shape,where the maximum damage value was only 18.3%.The accuracy of constitutive model and finite element(FE)simulation was verified by the microhardness tests,which indicates that the FE model based on physical internal-state variables can well optimize the hot forming process of TA32 titanium alloy complex parts. 展开更多
关键词 ta32 titanium alloy constitutive equation hot deformation microstructure evolution finite element method
下载PDF
Hot compressive deformation behaviors and micro-mechanisms of TA15 alloy 被引量:3
12
作者 LIU Yong,ZHU Jingchuan,WANG Yang,and ZHAN Jiajun School of Materials Science and Technology,Harbin Institute of Technology,Harbin 150001,China 《Rare Metals》 SCIE EI CAS CSCD 2007年第S1期162-167,共6页
The hot deformation behaviors of TA15 alloy,as well as the microstructure obtained after compressive deformation,were investigated.The results show that TA15 alloy exhibits a peak stress when deformed at temperature l... The hot deformation behaviors of TA15 alloy,as well as the microstructure obtained after compressive deformation,were investigated.The results show that TA15 alloy exhibits a peak stress when deformed at temperature lower than 900 ℃,implying recrystallization characteristics.However,steady flow stress-stain behavior is observed without peak stress when deformation is employed at temperature higher than 900 ℃,showing recovery characteristics.Micro-deformation band appears at deformation temperature of 750 ℃,and equiaxed grains are found at 800 ℃,implying the occurrence of recrystallization.When deformed at 925 ℃,the specimen shows the recovery characteristics with dislocation networks and sub-grain boundaries. 展开更多
关键词 ta15 alloy hot compressive deformation micro-mechanisms
下载PDF
Deformation banding in β working of two-phase TA15 titanium alloy 被引量:3
13
作者 Xiao-guang FAN Xiang ZENG +4 位作者 He YANG Peng-fei GAO Miao MENG Rui ZUO Peng-hui LEI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第11期2390-2399,共10页
To study deformation banding inβworking of TA15titanium alloy,hot simulation compression experiments were carried out on a Gleeble3500thermal simulator,and the microstructure was investigated by optical microscopy(OM... To study deformation banding inβworking of TA15titanium alloy,hot simulation compression experiments were carried out on a Gleeble3500thermal simulator,and the microstructure was investigated by optical microscopy(OM)and electron backscattered diffraction(EBSD).It is found that inβworking of TA15titanium alloy,deformation banding is still an important grain refinement mechanism up to temperature as high as0.7Tm(Tm is the melting temperature).Boundaries of deformation bands(DBBs)may be sharp or diffusive.Sharp DBBs retard discontinuous dynamic recrystallization(DDRX)by prohibiting nucleation,while the diffusive ones are sources of continuous dynamic recrystallization(CDRX).Deformation banding is more significant at high strain rate and large initial grain size.The average width of grain subdivisions is sensitive to strain rate but less affected by temperature and initial grain size.Multi-directional forging which produces crossing DDBs is potential to refine microstructure of small-size forgings. 展开更多
关键词 ta15 titanium alloy β working deformation banding grain refinement dynamic recrystallization
下载PDF
Microstructure and mechanical properties of friction stir processed TA5 alloy 被引量:2
14
作者 Li ZHOU Ming-run YU +5 位作者 Wei-guang CHEN Zi-li ZHANG Shuai DU Hui-jie LIU Yan YU Fu-yang GAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第2期404-415,共12页
Ultra-fine grained TA5 titanium alloy was fabricated by friction stir processing(FSP).Temperature distribution and material flow were simulated by the coupled Euler−Lagrange(CEL)method.The microstructure and mechanica... Ultra-fine grained TA5 titanium alloy was fabricated by friction stir processing(FSP).Temperature distribution and material flow were simulated by the coupled Euler−Lagrange(CEL)method.The microstructure and mechanical properties of TA5 alloy were characterized by optical and scanning electron microscope,Vickers hardness,and tensile tests.The processed alloy was composed of ultra-fine grained and equiaxed grains due to dynamic recrystallization.The microstructure recrystallized through grain boundary rotation and dislocation accumulation.The grain size reached the minimum on the advancing side of the stir zone with the highest grain misorientation.Ultimate tensile strength was promoted to over 830 MPa after FSP at a rotating speed of 200 r/min,whereas elongation varied a little.The specimens all fractured on the retreating side of the stir zone and smaller dimples were depicted from the fracture morphologies of FSP specimens. 展开更多
关键词 friction stir processing ta5 alloy coupled Euler−Lagrange simulation TEXTURE mechanical properties
下载PDF
Compatibility research of laser additive repairing TA15 forgings with Ti6Al4V-xTA15 alloy 被引量:2
15
作者 YU Jun SONG Ye-pan +4 位作者 LIN Xin CAO Zhen-jie ZENG Quan-ren WANG Jun-jie HUANG Wei-dong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第4期1015-1027,共13页
The application of mixed powders with different mass fraction on laser additive repairing(LAR)can be an effective way to guarantee the performance and functionality of repaired part in time.A convenient and feasible a... The application of mixed powders with different mass fraction on laser additive repairing(LAR)can be an effective way to guarantee the performance and functionality of repaired part in time.A convenient and feasible approach is presented to repair TA15 forgings by employing Ti6Al4V-xTA15 mixed powders in this paper.The performance compatibility of Ti6Al4V-xTA15 powders from the aspects of microhardness,tensile property,heat capacity,thermal expansion coefficient and corrosion resistance with the TA15 forgings was fully investigated.The primaryαlaths were refined and the volume fraction of the secondaryαphase was increased by increasing the mass fraction of TA15 in the mixed Ti6Al4V-xTA15 powders,leading to varied performances.In conclusion,the mixed Ti6Al4V-70%TA15(x=70%)powders is the most suitable candidate and is recommended as the raw material for LAR of TA15 forgings based on overall consideration of the compatibility calculations of the laser repaired zone with the wrought substrate zone. 展开更多
关键词 ta15 alloy Ti6Al4V alloy laser additive repairing compatibility
下载PDF
Hot spinning of cylindrical workpieces of TA15 titanium alloy 被引量:1
16
作者 XU Wenchen,SHAN Debin,YANG Guoping,CHEN Yu,LU Yan,and KANG Dachang School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China 《Rare Metals》 SCIE EI CAS CSCD 2007年第S1期255-261,共7页
In order to form large-diameter thin-wall cylindrical workpieces of TA15 titanium alloy,tube hot spinning experiments of the alloy were conducted on a CNC hot spinning machine.The causes of some forming defects occuri... In order to form large-diameter thin-wall cylindrical workpieces of TA15 titanium alloy,tube hot spinning experiments of the alloy were conducted on a CNC hot spinning machine.The causes of some forming defects occuring in hot spinning,such as crack,pileup,bulge and corrugation,were analyzed and the corresponding measures were put forward to avoid spinning defects,based on which a proper process scheme of hot spinning of TA15 alloy was obtained and the large-diameter and thin-walled cylindrical workpieces were formed with good quality.The results show that spinning temperature has distinct influence on forming quality of spun workpieces.The range of spinning temperature determines the spinnability of titanium alloy and the ununiformity of temperature distribution near the deformation zone leads to the formation of bulge.The reasonable heating method is that the deforming region is heated to the optimum temperature range of 600-700 ℃,the deformed region is heated continuously and a certain length of undeformed region is preheated.With the thickness-to-diameter ratio(t/D) of spun workpiece reducing to certain value(t/D<1%),surface bulge and corrugation is rather easier to come into being,which could be controlled through restraining diameter growth and employing smaller reduction rate and lower temperature in the optimum spinning temperature range. 展开更多
关键词 ta15 titanium alloy hot spinning cylindrical workpiece forming defect thickness-to-diameter ratio
下载PDF
Effects of Ta Addition on NiTi Shape Memory Alloys 被引量:3
17
作者 Jianlu MA, Jiangnan LIU+, Zhengpin WANG and Fei XUE (Dept. of Materials Science & Engineering, Xi’an Institute of Technology, Xi’an 710032, China) Kuang-Hsi WU and Zhongjie PU (Department of Mechanical Engineering, Florida International University, USA) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第5期534-536,共3页
The effect of Ta addition on the martensitic transformation characteristics and the X-ray visibility on NiTi shape memory alloy have been studied in (Ni51Ti49)1-xTax system. It was found that the transformation temper... The effect of Ta addition on the martensitic transformation characteristics and the X-ray visibility on NiTi shape memory alloy have been studied in (Ni51Ti49)1-xTax system. It was found that the transformation temperatures of the Ni51Ti49 binary alloy increased drastically by an addition of 0~4 at. pet Ta, but only slightly when the concentration exceeded 4 at. pct; the addition of Ta greatly decreases the sensitivity of the martensitic transformations to the variation in the Ni-Ti ratio. The addition of Ta to the NiTi binary alloy can improve its X-ray visibility. 展开更多
关键词 NITI Effects of ta Addition on NiTi Shape Memory alloys ta
下载PDF
Effect of thermo-mechanical process on structure and high temperature shape memory properties of Ti–15Ta–15Zr alloy 被引量:1
18
作者 郑晓航 隋解和 +2 位作者 杨哲一 张治国 蔡伟 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第5期299-303,共5页
The effect of thermo-mechanical treatment on microstructure evolution, martensite transformation, and shape memory behavior of Ti–15Ta–15Zr high temperature shape memory alloy were investigated. Different martensite... The effect of thermo-mechanical treatment on microstructure evolution, martensite transformation, and shape memory behavior of Ti–15Ta–15Zr high temperature shape memory alloy were investigated. Different martensite morphologies were found with different annealing temperatures. The Ti–15Ta–15Zr alloy exhibits almost perfect shape memory recovery strain of 6% after annealing at 973 K for 0.5 h. 展开更多
关键词 martensite thermo ta Zr alloy annealing annealed rolled rolling perfect tensile
下载PDF
Characterization and Tribological Performance of Titanium Nitrides in Situ Grown on Ti6Al4V Alloy by Glow Discharge Plasma Nitriding 被引量:1
19
作者 KONG Weicheng YU Zhou HU Jun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第1期76-84,共9页
Titanium(Ti)nitrides were in situ grown on Ti6Al4V alloy(TA)using a glow discharge plasma nitriding(GDPN).The morphology,chemical composition,phase and mechanical property of the obtained nitrided TA were analyzed usi... Titanium(Ti)nitrides were in situ grown on Ti6Al4V alloy(TA)using a glow discharge plasma nitriding(GDPN).The morphology,chemical composition,phase and mechanical property of the obtained nitrided TA were analyzed using a scanning electron microscope(SEM),energy dispersive spectroscope(EDS),X-ray diffraction(XRD),and nanoindentation tester,respectively.The tribological performances of un-nitrided and nitrided TAs were evaluated using a ball-on-plate wear tester,and the wear mechanism was also discussed in detail.The results show that the nitrided layer with the compound and diffusion layers is formed on the nitrided TA,which is composed of δ-TiN and a-Ti phases.The nanohardness and elastic modulus of nitrided TA are 6.05 and 143.13 GPa,respectively,higher than those of un-nitrided TA.The friction reduction and anti-wear performances of nitrided TA are better than those of un-nitrided TA,and the wear mechanism is primary abrasive wear,accompanying with adhesive wear,which is attributed to the formation of Ti nitrides with the high nanohardness and elastic modulus. 展开更多
关键词 glow discharge plasma nitriding(GDPN) Ti6Al4V alloy(ta) coefficient of friction(COF) wear mechanism
下载PDF
Effects of Strain Rate on Dislocation for TA15 Alloy during Hot Compressive Deformation
20
作者 刘勇 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第2期187-190,共4页
The effects of strain rate on the dislocation type and dislocation configure of TA15 alloy were investigated.The experimental results show that the operating dislocation type changes from c type to c and a+ c type wi... The effects of strain rate on the dislocation type and dislocation configure of TA15 alloy were investigated.The experimental results show that the operating dislocation type changes from c type to c and a+ c type with increasing strain rate under the deformation condition of 900℃,60% strain.Under the condition of 900℃,60% strain and 0.001/s strain rate,lots of orientate dislocation cellular configurations and sub-grains,many dislocations pile up before sub boundary.When the strain rate increases to 0.1/s,some dislocations exhibit curved and dislocation tangles and pile-ups can be found,suggesting more dislocations and much stronger interactions among dislocations. 展开更多
关键词 ta15 alloy hot deformation dislocation type dislocation configuration strain rate
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部