期刊文献+
共找到258篇文章
< 1 2 13 >
每页显示 20 50 100
Numerical Analysis on the Effect of n-Si on Cu(In, Ga)Se2 Based Thin-Films for High-Performance Solar Cells by 1D-SCAPS
1
作者 Rasika N. Mohottige Micheal Farndale +1 位作者 Gary S. Coombs Shahnoza Saburhhojayeva 《Open Journal of Applied Sciences》 2024年第5期1315-1329,共15页
We report the performances of a chalcopyrite Cu(In, Ga)Se<sub>2 </sub>CIGS-based thin-film solar cell with a newly employed high conductive n-Si layer. The data analysis was performed with the help of the ... We report the performances of a chalcopyrite Cu(In, Ga)Se<sub>2 </sub>CIGS-based thin-film solar cell with a newly employed high conductive n-Si layer. The data analysis was performed with the help of the 1D-Solar Cell Capacitance Simulator (1D-SCAPS) software program. The new device structure is based on the CIGS layer as the absorber layer, n-Si as the high conductive layer, i-In<sub>2</sub>S<sub>3</sub>, and i-ZnO as the buffer and window layers, respectively. The optimum CIGS bandgap was determined first and used to simulate and analyze the cell performance throughout the experiment. This analysis revealed that the absorber layer’s optimum bandgap value has to be 1.4 eV to achieve maximum efficiency of 22.57%. Subsequently, output solar cell parameters were analyzed as a function of CIGS layer thickness, defect density, and the operating temperature with an optimized n-Si layer. The newly modeled device has a p-CIGS/n-Si/In<sub>2</sub>S<sub>3</sub>/Al-ZnO structure. The main objective was to improve the overall cell performance while optimizing the thickness of absorber layers, defect density, bandgap, and operating temperature with the newly employed optimized n-Si layer. The increase of absorber layer thickness from 0.2 - 2 µm showed an upward trend in the cell’s performance, while the increase of defect density and operating temperature showed a downward trend in solar cell performance. This study illustrates that the proposed cell structure shows higher cell performances and can be fabricated on the lab-scale and industrial levels. 展开更多
关键词 n-Si p-CIGS 1D-SCAPS thin-films In2S3
下载PDF
Heterojunction-engineered carrier transport in elevated-metal metal-oxide thin-film transistors
2
作者 Xiao Li Zhikang Ma +6 位作者 Jinxiong Li Wengao Pan Congwei Liao Shengdong Zhang Zhuo Gao Dong Fu Lei Lu 《Journal of Semiconductors》 EI CAS CSCD 2024年第10期54-59,共6页
This study investigates the carrier transport of heterojunction channel in oxide semiconductor thin-film transistor(TFT)using the elevated-metal metal-oxide(EMMO)architecture and indium−zinc oxide(InZnO).The heterojun... This study investigates the carrier transport of heterojunction channel in oxide semiconductor thin-film transistor(TFT)using the elevated-metal metal-oxide(EMMO)architecture and indium−zinc oxide(InZnO).The heterojunction band diagram of InZnO bilayer was modified by the cation composition to form the two-dimensional electron gas(2DEG)at the interface quantum well,as verified using a metal−insulator−semiconductor(MIS)device.Although the 2DEG indeed contributes to a higher mobility than the monolayer channel,the competition and cooperation between the gate field and the built-in field strongly affect such mobility-boosting effect,originating from the carrier inelastic collision at the heterojunction interface and the gate field-induced suppression of quantum well.Benefited from the proper energy-band engineering,a high mobility of 84.3 cm2·V^(−1)·s^(−1),a decent threshold voltage(V_(th))of−6.5 V,and a steep subthreshold swing(SS)of 0.29 V/dec were obtained in InZnO-based heterojunction TFT. 展开更多
关键词 oxide semiconductor thin-film transistors two-dimensional electron gas HETEROJUNCTION high mobility
下载PDF
Indispensable gutter layers in thin-film composite membranes for carbon capture
3
作者 Gengyi Zhang Haiqing Lin 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第8期1220-1238,共19页
Industrial thin-film composite(TFC)membranes achieve superior gas separation properties from high-performance selective layer materials,while the success of membrane technology relies on high-performance gutter layers... Industrial thin-film composite(TFC)membranes achieve superior gas separation properties from high-performance selective layer materials,while the success of membrane technology relies on high-performance gutter layers to achieve production scalability and low-cost manufacturing.However,the current literature predominantly focuses on the design of polymer architectures to obtain high permeability and selectivity,while the art of fabricating gutter layers is usually safeguarded by industrial manufacturers and appears lackluster to academic researchers.This is the first report aiming to provide a comprehensive and critical review of state-of-the-art gutter layer materials and their design and modification to enable TFC membranes with superior separation performance.We first elucidate the importance of the gutter layer on membrane performance through modeling and experimental results.Then various gutter layer materials used to obtain high-performance composite membranes are critically reviewed,and the strategies to improve their compatibility with the selective layer are highlighted,such as oxygen plasma treatment,polydopamine deposition,and surface grafting.Finally,we present the opportunities of the gutter layer design for practical applications. 展开更多
关键词 thin-film composite membranes Gutter layer Gas separation Carbon capture
下载PDF
Low-Volatile Binder Enables Thermal Shock-Resistant Thin-Film Cathodes for Thermal Batteries
4
作者 Yong Xie Yong Cao +8 位作者 Xu Zhang Liangping Dong Xiaojiang Liu Yixiu Cui Chao Wang Yanhua Cui Xuyong Feng Hongfa Xiang Long Qie 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期126-134,共9页
Manufacturing thin-film components is crucial for achieving high-efficiency and high-power thermal batteries(TBs).However,developing binders with low-gas production at the operating temperature range of TBs(400-550... Manufacturing thin-film components is crucial for achieving high-efficiency and high-power thermal batteries(TBs).However,developing binders with low-gas production at the operating temperature range of TBs(400-550°C)has proven to be a significant challenge.Here,we report the use of acrylic acid derivative terpolymer(LA136D)as a low-volatile binder for thin-film cathode fabrication and studied the chain scission and chemical bondbreaking mechanisms in pyrolysis.It is shown LA136D defers to randomchain scission and cross-linking chain scission mechanisms,which gifts it with a low proportion of volatile products(ψ,ψ=39.2 wt%)at even up to 550°C,well below those of the conventional PVDF(77.6 wt%)and SBR(99.2 wt%)binders.Surprisingly,LA136D contributes to constructing a thermal shock-resistant cathode due to the step-by-step bond-breaking process.This is beneficial for the overall performance of TBs.In discharging test,the thin-film cathodes exhibited a remarkable 440%reduction in polarization and 300%enhancement in the utilization efficiency of cathode materials,while with just a slight increase of 0.05 MPa in gas pressure compared with traditional“thick-film”cathode.Our work highlights the potential of LA136D as a low-volatile binder for thin-film cathodes and shows the feasibility of manufacturing high-efficiency and high-power TBs through polymer molecule engineering. 展开更多
关键词 gas production HIGH-POWER low-volatile binder thermal battery thin-film cathode
下载PDF
Implementation of sub-100 nm vertical channel-all-around(CAA) thin-film transistor using thermal atomic layer deposited IGZO channel
5
作者 Yuting Chen Xinlv Duan +9 位作者 Xueli Ma Peng Yuan Zhengying Jiao Yongqing Shen Liguo Chai Qingjie Luan Jinjuan Xiang Di Geng Guilei Wang Chao Zhao 《Journal of Semiconductors》 EI CAS CSCD 2024年第7期40-44,共5页
In-Ga-Zn-O(IGZO) channel based thin-film transistors(TFT), which exhibit high on-off current ratio and relatively high mobility, has been widely researched due to its back end of line(BEOL)-compatible potential for th... In-Ga-Zn-O(IGZO) channel based thin-film transistors(TFT), which exhibit high on-off current ratio and relatively high mobility, has been widely researched due to its back end of line(BEOL)-compatible potential for the next generation dynamic random access memory(DRAM) application. In this work, thermal atomic layer deposition(TALD) indium gallium zinc oxide(IGZO) technology was explored. It was found that the atomic composition and the physical properties of the IGZO films can be modulated by changing the sub-cycles number during atomic layer deposition(ALD) process. In addition, thin-film transistors(TFTs) with vertical channel-all-around(CAA) structure were realized to explore the influence of different IGZO films as channel layers on the performance of transistors. Our research demonstrates that TALD is crucial for high density integration technology, and the proposed vertical IGZO CAA-TFT provides a feasible path to break through the technical problems for the continuous scale of electronic equipment. 展开更多
关键词 In-Ga-Zn-O(IGZO) thermal atomic layer deposition vertical channel thin-film transistor
下载PDF
Numerical Simulation of Flow Field and Flow State Division in Thin-Film Evaporators
6
作者 CHEN Xing PENG Yitian +1 位作者 HUANG Yao ZOU Kun 《Journal of Donghua University(English Edition)》 CAS 2024年第5期525-535,共11页
The flow field and flow state of thin-film evaporators are complex,and it is significant to effectively divide and quantify the flow field and flow state,as well as to study the internal flow field distribution and ma... The flow field and flow state of thin-film evaporators are complex,and it is significant to effectively divide and quantify the flow field and flow state,as well as to study the internal flow field distribution and material mixing characteristics to improve the efficiency of thin-film evaporators.By using computational fluid dynamics(CFD)numerical simulation,the distribution pattern of the high-viscosity fluid flow field in the thin-film evaporators was obtained.It was found that the staggered interrupted blades could greatly promote material mixing and transportation,and impact the film formation of high-viscosity materials on the evaporator wall.Furthermore,a flow field state recognition method based on radial volume fraction statistics was proposed,and could quantitatively describe the internal flow field of thin-film evaporators.The method divides the high-viscosity materials in the thin-film evaporators into three flow states,the liquid film state,the exchange state and the liquid mass state.The three states of materials could be quantitatively described.The results show that the materials in the exchange state can connect the liquid film and the liquid mass,complete the material mixing and exchange,renew the liquid film,and maintain continuous and efficient liquid film evaporation. 展开更多
关键词 flow state division material mixing thin-film evaporator numerical simulation
下载PDF
Generation of broadband polarization-orthogonal photon pairs via the dispersion-engineered thin-film lithium niobate waveguide
7
作者 Ji-Ning Zhang Tong-Yu Zhang +2 位作者 Jia-Chen Duan Yan-Xiao Gong Shi-Ning Zhu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期46-51,共6页
Broadband photon pairs are highly desirable for quantum metrology,quantum sensing,and quantum communication.Such sources are usually designed through type-0 phase-matching spontaneous parametric down-conversion(SPDC)t... Broadband photon pairs are highly desirable for quantum metrology,quantum sensing,and quantum communication.Such sources are usually designed through type-0 phase-matching spontaneous parametric down-conversion(SPDC)that makes the photon pairs hard to separate in the frequency-degenerate case and thus limits their applications.In this paper,we design a broadband frequency-degenerate telecom-band photon pair source via the type-II SPDC in a dispersion-engineered thin-film lithium niobate waveguide,where the polarization modes of photon pairs are orthogonal and thus are easily separated deterministically.With a 5-mm-long waveguide,our design can achieve a bandwidth of 5.56 THz(44.8 nm),which is 8.6 times larger than that of the bulk lithium niobate,and the central wavelength can be flexibly adjusted.Our design is a promising approach towards high-quality integrated photon sources and may have wide applications in photonic quantum technologies. 展开更多
关键词 broadband photon pair source spontaneous parametric down-conversion dispersion engineering thin-film lithium niobate waveguide
下载PDF
Numerical Study and Optimization of CZTS-Based Thin-Film Solar Cell Structure with Different Novel Buffer-Layer Materials Using SCAPS-1D Software
8
作者 Md. Zamil Sultan Arman Shahriar +4 位作者 Rony Tota Md. Nuralam Howlader Hasibul Haque Rodro Mahfuja Jannat Akhy Md. Abir Al Rashik 《Energy and Power Engineering》 2024年第4期179-195,共17页
This study explored the performances of CZTS-based thin-film solar cell with three novel buffer layer materials ZnS, CdS, and CdZnS, as well as with variation in thickness of buffer and absorber-layer, doping concentr... This study explored the performances of CZTS-based thin-film solar cell with three novel buffer layer materials ZnS, CdS, and CdZnS, as well as with variation in thickness of buffer and absorber-layer, doping concentrations of absorber-layer material and operating temperature. Our aims focused to identify the most optimal thin-film solar cell structure that offers high efficiency and lower toxicity which are desirable for sustainable and eco-friendly energy sources globally. SCAPS-1D, widely used software for modeling and simulating solar cells, has been used and solar cell fundamental performance parameters such as open-circuited voltage (), short-circuited current density (), fill-factor() and efficiency() have been optimized in this study. Based on our simulation results, it was found that CZTS solar cell with Cd<sub>0.4</sub>Zn<sub>0.6</sub>S as buffer-layer offers the most optimal combination of high efficiency and lower toxicity in comparison to other structure investigated in our study. Although the efficiency of Cd<sub>0.4</sub>Zn<sub>0.6</sub>S, ZnS and CdS are comparable, Cd<sub>0.4</sub>Zn<sub>0.6</sub>S is preferable to use as buffer-layer for its non-toxic property. In addition, evaluation of performance as a function of buffer-layer thickness for Cd<sub>0.4</sub>Zn<sub>0.6</sub>S, ZnS and CdS showed that optimum buffer-layer thickness for Cd<sub>0.4</sub>Zn<sub>0.6</sub>S was in the range from 50 to 150nm while ZnS offered only 50 – 75 nm. Furthermore, the temperature dependence performance parameters evaluation revealed that it is better to operate solar cell at temperature 290K for stable operation with optimum performances. This study would provide valuable insights into design and optimization of nanotechnology-based solar energy technology for minimizing global energy crisis and developing eco-friendly energy sources sustainable and simultaneously. 展开更多
关键词 thin-film Solar Cell CZTS Buffer-Layer Renewable Energy Green-House Gases Efficiency
下载PDF
Determination of Ni^(2+) in Waters with Sodium Polyacrylate as a Binding Phase in Diffusive Gradients in Thin-films 被引量:2
9
作者 CHEN Hong DONG Jia +1 位作者 NIU Yong-xin SUN Ting 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2011年第4期703-707,共5页
An aqueous solution containing sodium polyacrylate(PAAS) was used in diffusive gradient in thin-films technique(DGT) to measure DGT-labile Ni2+ concentrations.The DGT devices(PAAS DGT) were validated in four ty... An aqueous solution containing sodium polyacrylate(PAAS) was used in diffusive gradient in thin-films technique(DGT) to measure DGT-labile Ni2+ concentrations.The DGT devices(PAAS DGT) were validated in four types of solutions,including synthetic river water containing metal ions with complexing EDTA or that without complexing EDTA,natural river water(Ling River,Jinzhou,China) spiked with Ni2+,and an industrial wastewater (Jinzhou,China).Results show that only free metal ions were measured by PAAS DGT,recovery=97.36% in the solutions containing only free metal ions,recovery=49.62% in a solution with metal/EDTA molar ratio of 2:1 and recovery=0 in the solutions with metal/EDTA molar ratios of 1:1 and 1:2.These indicated that the complexes of Ni-EDTA were DGT-inert.The DGT performance in spiked river water(recovery=18.24%) and in industrial wastewater(recovery=12.25%) were investigated,which indicated that the measurement of metals by this DGT device did not include the humic substances complexed fractions of metals.The binding properties of PAAS DGT for Ni2+ were investigated under different conditions of pH value and ionic strength.Conditional stability constants(lgK) of PAAS-Ni complexes were also evaluated. 展开更多
关键词 Diffusive gradient in thin-film Sodium polyacrylate Binding agent Ni2+
下载PDF
Two-dimensional equations for thin-films of ionic conductors 被引量:1
10
作者 Shuting LU Chunli ZHANG +1 位作者 Weiqiu CHEN Jiashi YANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第8期1071-1088,共18页
A theoretical model is developed for predicting both conduction and diffusion in thin-film ionic conductors or cables. With the linearized Poisson-Nernst-Planck(PNP)theory, the two-dimensional(2D) equations for thin i... A theoretical model is developed for predicting both conduction and diffusion in thin-film ionic conductors or cables. With the linearized Poisson-Nernst-Planck(PNP)theory, the two-dimensional(2D) equations for thin ionic conductor films are obtained from the three-dimensional(3D) equations by power series expansions in the film thickness coordinate, retaining the lower-order equations. The thin-film equations for ionic conductors are combined with similar equations for one thin dielectric film to derive the 2D equations of thin sandwich films composed of a dielectric layer and two ionic conductor layers. A sandwich film in the literature, as an ionic cable, is analyzed as an example of the equations obtained in this paper. The numerical results show the effect of diffusion in addition to the conduction treated in the literature. The obtained theoretical model including both conduction and diffusion phenomena can be used to investigate the performance of ionic-conductor devices with any frequency. 展开更多
关键词 ionic conduction and diffusion linearized Poisson-Nernst-Planck(PNP) theory two-dimensional(2D) equation ionic conductor thin-film
下载PDF
All-Solid-State Thin-Film Lithium-Sulfur Batteries 被引量:8
11
作者 Renming Deng Bingyuan Ke +5 位作者 Yonghui Xie Shoulin Cheng Congcong Zhang Hong Zhang Bingan Lu Xinghui Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第5期326-338,共13页
Lithium-sulfur(Li-S)system coupled with thin-film solid electrolyte as a novel high-energy micro-battery has enormous potential for complementing embedded energy harvesters to enable the autonomy of the Internet of Th... Lithium-sulfur(Li-S)system coupled with thin-film solid electrolyte as a novel high-energy micro-battery has enormous potential for complementing embedded energy harvesters to enable the autonomy of the Internet of Things microdevice.However,the volatility in high vacuum and intrinsic sluggish kinetics of S hinder researchers from empirically integrating it into allsolid-state thin-film batteries,leading to inexperience in fabricating all-solid-state thin-film Li-S batteries(TFLSBs).Herein,for the first time,TFLSBs have been successfully constructed by stacking vertical graphene nanosheets-Li2S(VGsLi2S)composite thin-film cathode,lithium-phosphorous-oxynitride(LiPON)thin-film solid electrolyte,and Li metal anode.Fundamentally eliminating Lipolysulfide shuttle effect and maintaining a stable VGs-Li2S/LiPON interface upon prolonged cycles have been well identified by employing the solid-state Li-S system with an“unlimited Li”reservoir,which exhibits excellent longterm cycling stability with a capacity retention of 81%for 3,000 cycles,and an exceptional high temperature tolerance up to 60℃.More impressively,VGs-Li2S-based TFLSBs with evaporated-Li thin-film anode also demonstrate outstanding cycling performance over 500 cycles with a high Coulombic efficiency of 99.71%.Collectively,this study presents a new development strategy for secure and high-performance rechargeable all-solid-state thin-film batteries. 展开更多
关键词 All-solid-state thin-film batteries Li-S batteries Vertical graphene nanosheets Lithium phosphorous oxynitride Li2S
下载PDF
Stability of high-salinity-enhanced foam:Surface behavior and thin-film drainage 被引量:1
12
作者 Lin Sun Xue-Hui Sun +6 位作者 Yong-Chang Zhang Jun Xin Hong-Ying Sun Yi-Bo Li Wan-Fen Pu Jin-Yu Tang Bing Wei 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2343-2353,共11页
Cocamidopropyl hydroxyl sulfobetaine(CHSB)is one of the most promising foaming agents for high-salinity reservoirs because the salt in place facilitates its foam stability,even with salinity as high as 2×10^(5)mg... Cocamidopropyl hydroxyl sulfobetaine(CHSB)is one of the most promising foaming agents for high-salinity reservoirs because the salt in place facilitates its foam stability,even with salinity as high as 2×10^(5)mg/L.However,the synergistic effects between CHSB and salt have not been fully understood.This study utilized bulk foam tests and thin-film interferometry to comprehensively investigate the macroscopic and microscopic decay processes of CHSB foams with NaCl concentrations ranging from 2.3×10^(4)to 2.1×10^(5)mg/L.We focused on the dilatational viscoelasticity and dynamic thin-film thickness to elucidate the high-salinity-enhanced foam stability.The increase in dilatational viscoelasticity and supramolecular oscillating structural force(Π_(OS))with salinity dominated the superior stability of CHSB foam.With increasing salinity,more CHSB molecules accumulated on the surface with a lower diffusion rate,leading to high dilatational moduli and surface elasticity,thus decelerating coarsening and coalescence.Meanwhile,the number density of micelles in the thin film increased with salinity,resulting in increasedΠOS.Consequently,the energy barrier for stepwise thinning intensified,and the thin-film drainage slowed.This work conduces to understand the mechanisms behind the pronounced stability of betaine foam and can promote the widespread application of foam in harsh reservoirs. 展开更多
关键词 High-salinity reservoirs Betaine foam Foam stability Dilatational viscoelasticity Disjoining pressure thin-film interferometry
下载PDF
Fabrication of Sm-Based Perovskite-Type Oxide Thin-Films and Gas Sensing Properties to Acetylene
13
作者 Tomohisa Tasaki Satoko Takase Youichi Shimizu 《Journal of Sensor Technology》 2012年第2期75-81,共7页
Sm-based perovskite-type oxide (SmMeO3: Me = Cr, Mn, Fe, Co) thin-films could be synthesized by a wet-chemical method using an acetylacetone—Poly(Vinyl Pyrrolidone) (PVP) polymeric precursor method at 750℃. The pero... Sm-based perovskite-type oxide (SmMeO3: Me = Cr, Mn, Fe, Co) thin-films could be synthesized by a wet-chemical method using an acetylacetone—Poly(Vinyl Pyrrolidone) (PVP) polymeric precursor method at 750℃. The perovskite-type oxide thin-films were tried to apply an acetylene gas sensor based on AC impedance spectroscopy. Among the oxides tested, SmFeO3 thin-film sensor showed good sensor responses in which the AC impedance at 20 kHz was depending on acetylene gas concentration between 2 ppm and 80 ppm at 400℃. 展开更多
关键词 PEROVSKITE-TYPE OXIDE thin-film AC IMPEDANCE ACETYLENE Gas Sensor
下载PDF
Effects of Electropulsing Induced Microstructural Changes on THz-Reflection and Electrical Conductivity of Al-Doped ZnO Thin-Films
14
作者 Yaohua Zhu Weien Lai 《Journal of Surface Engineered Materials and Advanced Technology》 2016年第3期106-117,共13页
Electropulsing induced phase transformation and crystal orientation change and their effects on electrical conductivity, THz reflection and surface roughness of thin-films of Al<sub>2</sub>O<sub>3<... Electropulsing induced phase transformation and crystal orientation change and their effects on electrical conductivity, THz reflection and surface roughness of thin-films of Al<sub>2</sub>O<sub>3</sub> (2 wt%) doped ZnO were studied using XRD, SEM, AFM and Thz spectroscopy techniques. AZO-2 thin-films showed an effective response in THz spectroscopy under electropulsing. Electropulsing induced circular preferred crystal orientation changes and phase transformations were observed. The preferred crystal orientation changes accompanying decrease in stress and the secondary phase precipitation favored enhancing conductivity and THz reflection of the AZO-2 thin-films. After adequate electropulsing, both THz reflection and electrical conductivity of the thin-films were enhanced by 22.8% and 6.8%, respectively;meanwhile surface roughness reduced. The property responses of electropulsing are discussed from point view of microstructural change and dislocation dynamics. 展开更多
关键词 ELECTROPULSING PRECIPITATION Preferred Crystal Orientation THz Reflection Electrical Conductivity AZO thin-films
下载PDF
Texture ZnO Thin-Films and their Application as Front Electrode in Solar Cells
15
作者 Yue-Hui Hu Yi-Chuan Chen +4 位作者 Hai-Jun Xu Hao Gao Wei-Hui Jiang Fei Hu Yan-Xiang Wang 《Engineering(科研)》 2010年第12期973-978,共6页
In this paper, three kinds of textured ZnO thin-films (the first kind has the textured structure with both columnar and polygon, the second posses pyramid-like textured structure only, and the third has the textured s... In this paper, three kinds of textured ZnO thin-films (the first kind has the textured structure with both columnar and polygon, the second posses pyramid-like textured structure only, and the third has the textured structure with both crater-like and pyramid-like), were prepared by three kinds of methods, and the application of these ZnO thin-films as a front electrode in solar cell was studied, respectively. In the first method with negative bias voltage and appropriate sputtering parameters, the textured structure with columnar and polygon on the surface of ZnO thin-film are both existence for the sample prepared by direct magnetron sputtering. Using as a front electrode in solar cell, the photoelectric conversion efficiency Eff of 7.00% was obtained. The second method is that by sputtering on the ZnO:Al self-supporting substrate, and the distribution of pyramid-like was gained. Moreover, the higher (8.25%) photoelectric conversion efficiency of solar cell was got. The last method is that by acid-etching the as-deposited ZnO thin-film which possesses mainly both columnar and polygon structure, and the textured ZnO thin-film with both crater-like and pyramid-like structure was obtained, and the photoelectric conversion efficiency of solar cell is 7.10% when using it as front electrode. These results show that the textured ZnO thin-film prepared on self-supporting substrate is more suitable for using as a front electrode in amorphous silicon cells. 展开更多
关键词 TEXTURED ZnO thin-film Solar Cells FRONT ELECTRODE MAGNETRON SPUTTERING Transparent CONDUCTING Oxide Surface Of Micrograph SnO2:F
下载PDF
Low-temperature metal–oxide thin-film transistor technologies for implementing flexible electronic circuits and systems
16
作者 Runxiao Shi Tengteng Lei +1 位作者 Zhihe Xia Man Wong 《Journal of Semiconductors》 EI CAS CSCD 2023年第9期3-10,共8页
Here we review two 300℃metal–oxide(MO)thin-film transistor(TFT)technologies for the implementation of flexible electronic circuits and systems.Fluorination-enhanced TFTs for suppressing the variation and shift of tu... Here we review two 300℃metal–oxide(MO)thin-film transistor(TFT)technologies for the implementation of flexible electronic circuits and systems.Fluorination-enhanced TFTs for suppressing the variation and shift of turn-on voltage(VON),and dual-gate TFTs for acquiring sensor signals and modulating VON have been deployed to improve the robustness and performance of the systems in which they are deployed.Digital circuit building blocks based on fluorinated TFTs have been designed,fabricated,and characterized,which demonstrate the utility of the proposed low-temperature TFT technologies for implementing flexible electronic systems.The construction and characterization of an analog front-end system for the acquisition of bio-potential signals and an active-matrix sensor array for the acquisition of tactile images have been reported recently. 展开更多
关键词 flexible electronics metal-oxide semiconductor thin-film transistor dual gate FLUORINATION analog front-end system sensors
下载PDF
Fluorination-mitigated high-current degradation of amorphous InGaZnO thin-film transistors
17
作者 Yanxin Wang Jiye Li +4 位作者 Fayang Liu Dongxiang Luo Yunping Wang Shengdong Zhang Lei Lu 《Journal of Semiconductors》 EI CAS CSCD 2023年第9期57-61,共5页
As growing applications demand higher driving currents of oxide semiconductor thin-film transistors(TFTs),severe instabilities and even hard breakdown under high-current stress(HCS)become critical challenges.In this w... As growing applications demand higher driving currents of oxide semiconductor thin-film transistors(TFTs),severe instabilities and even hard breakdown under high-current stress(HCS)become critical challenges.In this work,the triggering voltage of HCS-induced self-heating(SH)degradation is defined in the output characteristics of amorphous indium-galliumzinc oxide(a-IGZO)TFTs,and used to quantitatively evaluate the thermal generation process of channel donor defects.The fluorinated a-IGZO(a-IGZO:F)was adopted to effectively retard the triggering of the self-heating(SH)effect,and was supposed to originate from the less population of initial deep-state defects and a slower rate of thermal defect transition in a-IGZO:F.The proposed scheme noticeably enhances the high-current applications of oxide TFTs. 展开更多
关键词 amorphous indium-gallium-zinc oxide(a-IGZO) thin-film transistors(TFTs) current stress self-heating(SH) FLUORINATION
下载PDF
Enhanced efficiency of the Sb_(2)Se_(3)thin-film solar cell by the anode passivation using an organic small molecular of TCTA
18
作者 Yujie Hu Zhixiang Chen +3 位作者 Yi Xiang Chuanhui Cheng Weifeng Liu Weishen Zhan 《Journal of Semiconductors》 EI CAS CSCD 2023年第8期62-67,共6页
Antimony selenide(Sb_(2)Se_(3))is an emerging solar cell material.Here,we demonstrate that an organic small molecule of 4,4',4''-tris(carbazol-9-yl)-triphenylamine(TCTA)can efficiently passivate the anode ... Antimony selenide(Sb_(2)Se_(3))is an emerging solar cell material.Here,we demonstrate that an organic small molecule of 4,4',4''-tris(carbazol-9-yl)-triphenylamine(TCTA)can efficiently passivate the anode interface of the Sb_(2)Se_(3)solar cell.We fabricated the device by the vacuum thermal evaporation,and took ITO/TCTA(3.0 nm)/Sb_(2)Se_(3)(50 nm)/C60(5.0 nm)/Alq3(3.0 nm)/Al as the device architecture,where Alq3 is the tris(8-hydroxyquinolinato)aluminum.By introducing a TCTA layer,the open-circuit voltage is raised from 0.36 to 0.42 V,and the power conversion efficiency is significantly improved from 3.2%to 4.3%.The TCTA layer not only inhibits the chemical reaction between the ITO and Sb_(2)Se_(3)during the annealing process but it also blocks the electron diffusion from Sb_(2)Se_(3)to ITO anode.The enhanced performance is mainly attributed to the suppression of the charge recombination at the anode interface. 展开更多
关键词 Sb_(2)Se_(3) thin-film solar cell PASSIVATION
下载PDF
High-performance amorphous In–Ga–Zn–O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO_(2) heterojunction charge trapping stack
19
作者 熊文 霍景永 +3 位作者 吴小晗 刘文军 张卫 丁士进 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第1期580-584,共5页
Amorphous In–Ga–Zn–O(a-IGZO)thin-film transistor(TFT)memories with novel p-SnO/n-SnO_(2) heterojunction charge trapping stacks(CTSs)are investigated comparatively under a maximum fabrication temperature of 280℃.Co... Amorphous In–Ga–Zn–O(a-IGZO)thin-film transistor(TFT)memories with novel p-SnO/n-SnO_(2) heterojunction charge trapping stacks(CTSs)are investigated comparatively under a maximum fabrication temperature of 280℃.Compared to a single p-SnO or n-SnO_(2) charge trapping layer(CTL),the heterojunction CTSs can achieve electrically programmable and erasable characteristics as well as good data retention.Of the two CTSs,the tunneling layer/p-SnO/nSnO_(2)/blocking layer architecture demonstrates much higher program efficiency,more robust data retention,and comparably superior erase characteristics.The resulting memory window is as large as 6.66 V after programming at 13 V/1 ms and erasing at-8 V/1 ms,and the ten-year memory window is extrapolated to be 4.41 V.This is attributed to shallow traps in p-SnO and deep traps in n-SnO_(2),and the formation of a built-in electric field in the heterojunction. 展开更多
关键词 nonvolatile memory a-IGZO thin-film transistor(TFT) charge trapping stack p-SnO/n-SnO_(2)heterojunction
下载PDF
Advances in mobility enhancement of ITZO thin-film transistors:a review
20
作者 Feilian Chen Meng Zhang +3 位作者 Yunhao Wan Xindi Xu Man Wong Hoi-Sing Kwok 《Journal of Semiconductors》 EI CAS CSCD 2023年第9期11-25,共15页
Indium-tin-zinc oxide(ITZO)thin-film transistor(TFT)technology holds promise for achieving high mobility and offers significant opportunities for commercialization.This paper provides a review of progress made in impr... Indium-tin-zinc oxide(ITZO)thin-film transistor(TFT)technology holds promise for achieving high mobility and offers significant opportunities for commercialization.This paper provides a review of progress made in improving the mobility of ITZO TFTs.This paper begins by describing the development and current status of metal-oxide TFTs,and then goes on to explain the advantages of selecting ITZO as the TFT channel layer.The evaluation criteria for TFTs are subsequently introduced,and the reasons and significance of enhancing mobility are clarified.This paper then explores the development of high-mobility ITZO TFTs from five perspectives:active layer optimization,gate dielectric optimization,electrode optimization,interface optimization,and device structure optimization.Finally,a summary and outlook of the research field are presented. 展开更多
关键词 thin-film transistor(TFT) indium-tin-zinc oxide(ITZO)TFT MOBILITY active matrix(AM)displays
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部