Bread wheat(Triticum aestivum L.)is one of the most important staple crops worldwide.The phytohormone auxin plays critical roles in the regulation of plant growth and development.However,only a few auxin-related genes...Bread wheat(Triticum aestivum L.)is one of the most important staple crops worldwide.The phytohormone auxin plays critical roles in the regulation of plant growth and development.However,only a few auxin-related genes have been genetically demonstrated to be involved in the control of plant architecture in wheat thus far.In this study,we characterized an auxinrelated gene in wheat,TaIAA15,and found that its ectopic expression in rice decreased the plant height and increased the leaf angle.Correlation analysis indicated that TaIAA15-3B was associated with plant height(Ph),spike length(SL)and 1000-grain weight(TGW)in wheat,and Hap-II of TaIAA15-3B was the most favored allele and selected by modern breeding in China.This study sheds light on the role of auxin signaling on wheat plant architecture as well as yield related traits.展开更多
基金supported by the National Basic Research Program of China(2016YFD0100102 and 2016YFD0100302)。
文摘Bread wheat(Triticum aestivum L.)is one of the most important staple crops worldwide.The phytohormone auxin plays critical roles in the regulation of plant growth and development.However,only a few auxin-related genes have been genetically demonstrated to be involved in the control of plant architecture in wheat thus far.In this study,we characterized an auxinrelated gene in wheat,TaIAA15,and found that its ectopic expression in rice decreased the plant height and increased the leaf angle.Correlation analysis indicated that TaIAA15-3B was associated with plant height(Ph),spike length(SL)and 1000-grain weight(TGW)in wheat,and Hap-II of TaIAA15-3B was the most favored allele and selected by modern breeding in China.This study sheds light on the role of auxin signaling on wheat plant architecture as well as yield related traits.