A local improvement procedure based on tabu search(TS) was incorporated into a basic genetic algorithm(GA) and a global optimal algorithm,i.e.,hybrid genetic algorithm(HGA) approach was used to search the circular and...A local improvement procedure based on tabu search(TS) was incorporated into a basic genetic algorithm(GA) and a global optimal algorithm,i.e.,hybrid genetic algorithm(HGA) approach was used to search the circular and noncircular slip surfaces associated with their minimum safety factors.The slope safety factors of circular and noncircular critical slip surfaces were calculated by the simplified Bishop method and an improved Morgenstern-Price method which can be conveniently programmed,respectively.Comparisons with other methods were made which indicate the high efficiency and accuracy of the HGA approach.The HGA approach was used to calculate one case example and the results demonstrated its applicability to practical engineering.展开更多
A new type of vehicle routing problem (VRP), multiple vehicle routing problem integrated reverse logistics (MVRPRL), is studied. In this problem, there is delivery or pickup (or both) and uncertain features in t...A new type of vehicle routing problem (VRP), multiple vehicle routing problem integrated reverse logistics (MVRPRL), is studied. In this problem, there is delivery or pickup (or both) and uncertain features in the demands of the clients. The deliveries of every client as uncertain parameters are expressed as triangular fuzzy numbers. In order to describe MVRPRL, a multi-objective fuzzy programming model with credibility measure theory is constructed. Then the simulationbased tabu search algorithm combining inter-route and intra-route neighborhoods and embedded restarts are designed to solve it. Computational results show that the tabu search algorithm developed is superior to sweep algorithms and that compared with handling each on separate routes, the transportation costs can be reduced by 43% through combining pickups with deliveries.展开更多
In this paper, a new hybrid multi-objective evolutionary algorithm (MOEA), the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), is proposed for the management of groundwater resources under va...In this paper, a new hybrid multi-objective evolutionary algorithm (MOEA), the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), is proposed for the management of groundwater resources under variable density conditions. Relatively few MOEAs can possess global search ability contenting with intensified search in a local area. Moreover, the overall searching ability of tabu search (TS) based MOEAs is very sensitive to the neighborhood step size. The NPTSGA is developed on the thought of integrating the genetic algorithm (GA) with a TS based MOEA, the niched Pareto tabu search (NPTS), which helps to alleviate both of the above difficulties. Here, the global search ability of the NPTS is improved by the diversification of candidate solutions arising from the evolving genetic algorithm population. Furthermore, the proposed methodology coupled with a density-dependent groundwater flow and solute transport simulator, SEAWAT, is developed and its performance is evaluated through a synthetic seawater intrusion management problem. Optimization results indicate that the NPTSGA offers a tradeoff between the two conflicting objectives. A key conclusion of this study is that the NPTSGA keeps the balance between the intensification of nondomination and the diversification of near Pareto-optimal solutions along the tradeoff curves and is a stable and robust method for implementing the multi-objective design of variable-density groundwater resources.展开更多
This paper describes a case study of 3D protein structure prediction of six sequences from protein data bank (PDB) by genetic algorithm and tabu search (GATS), where off-lattice AB model is considered as a simplif...This paper describes a case study of 3D protein structure prediction of six sequences from protein data bank (PDB) by genetic algorithm and tabu search (GATS), where off-lattice AB model is considered as a simplified model of protein structure. The lowest-energy values required for forming the native conformation of proteins are searched by GATS, and then the coarse structures (i.e., simplified structure) of the proteins are obtained according to the multiple angle parameters corresponding to the lowest energies. All the coarse structures form single hydrophobic cores surrounded by hydrophilic residues, which stay on the right side of the actual characteristic of protein structure. It demonstrates that this approach can predict the 3D protein structure effectively.展开更多
This paper considers a scheduling problem in industrial make-and-pack batch production process. This process equips with sequence-dependent changeover time, multipurpose storage units with limited capacity, storage ti...This paper considers a scheduling problem in industrial make-and-pack batch production process. This process equips with sequence-dependent changeover time, multipurpose storage units with limited capacity, storage time, batch splitting, partial equipment connectivity and transfer time. The objective is to make a production plan to satisfy all constraints while meeting demand requirement of packed products from various product families. This problem is NP-hard and the problem size is exponentially large for a realistic-sized problem. Therefore,we propose a genetic algorithm to handle this problem. Solutions to the problems are represented by chromosomes of product family sequences. These sequences are decoded to assign the resource for producing packed products according to forward assignment strategy and resource selection rules. These techniques greatly reduce unnecessary search space and improve search speed. In addition, design of experiment is carefully utilized to determine appropriate parameter settings. Ant colony optimization and Tabu search are also implemented for comparison. At the end of each heuristics, local search is applied for the packed product sequence to improve makespan. In an experimental analysis, all heuristics show the capability to solve large instances within reasonable computational time. In all problem instances, genetic algorithm averagely outperforms ant colony optimization and Tabu search with slightly longer computational time.展开更多
To solve the problems of incomplete topic description and repetitive crawling of visited hyperlinks in traditional focused crawling methods,in this paper,we propose a novel focused crawler using an improved tabu searc...To solve the problems of incomplete topic description and repetitive crawling of visited hyperlinks in traditional focused crawling methods,in this paper,we propose a novel focused crawler using an improved tabu search algorithm with domain ontology and host information(FCITS_OH),where a domain ontology is constructed by formal concept analysis to describe topics at the semantic and knowledge levels.To avoid crawling visited hyperlinks and expand the search range,we present an improved tabu search(ITS)algorithm and the strategy of host information memory.In addition,a comprehensive priority evaluation method based on Web text and link structure is designed to improve the assessment of topic relevance for unvisited hyperlinks.Experimental results on both tourism and rainstorm disaster domains show that the proposed focused crawlers overmatch the traditional focused crawlers for different performance metrics.展开更多
Rural power network planning is a complicated nonlinear optimized combination problem which based on load forecasting results, and its actual load is affected by many uncertain factors, which influenced optimization r...Rural power network planning is a complicated nonlinear optimized combination problem which based on load forecasting results, and its actual load is affected by many uncertain factors, which influenced optimization results of rural power network planning. To solve the problems, the interval algorithm was used to modify the initial search method of uncertainty load mathematics model in rural network planning. Meanwhile, the genetic/tabu search combination algorithm was adopted to optimize the initialized network. The sample analysis results showed that compared with the certainty planning, the improved method was suitable for urban medium-voltage distribution network planning with consideration of uncertainty load and the planning results conformed to the reality.展开更多
Grid computing is the combination of com- puter resources in a loosely coupled, heterogeneous, and geographically dispersed environment. Grid data are the data used in grid computing, which consists of large-scale dat...Grid computing is the combination of com- puter resources in a loosely coupled, heterogeneous, and geographically dispersed environment. Grid data are the data used in grid computing, which consists of large-scale data-intensive applications, producing and consuming huge amounts of data, distributed across a large number of machines. Data grid computing composes sets of independent tasks each of which require massive distributed data sets that may each be replicated on different resources. To reduce the completion time of the application and improve the performance of the grid, appropriate computing resources should be selected to execute the tasks and appropriate storage resources selected to serve the files required by the tasks. So the problem can be broken into two sub-problems: selection of storage resources and assignment of tasks to computing resources. This paper proposes a scheduler, which is broken into three parts that can run in parallel and uses both parallel tabu search and a parallel genetic algorithm. Finally, the proposed algorithm is evaluated by comparing it with other related algorithms, which target minimizing makespan. Simulation results show that the proposed approach can be a good choice for scheduling large data grid applications.展开更多
This paper introduces the problem of green bike relocation considering greenhouse gas emissions in free-floating bike-sharing systems(FFBSSs)and establishes a mathematical model of the problem.This model minimizes the...This paper introduces the problem of green bike relocation considering greenhouse gas emissions in free-floating bike-sharing systems(FFBSSs)and establishes a mathematical model of the problem.This model minimizes the total imbalance degree of bikes in the FFBSS and the greenhouse gas emissions generated by relocation in the FFBSS.Before the relocation phase,the FFBSS is divided into multiple relocation areas using a two-layer clustering method to reduce the scale of the relocation problem.In the relocation phase,the relocation route problem is converted into a pickup and delivery vehicle-routing problem.Then,an adaptive variable neighbourhood tabu search algorithm with a three-dimensional tabu list is proposed,which can simultaneously solve the relocation problem and the routing problem.A computational study based on the actual FFBSS used in Shanghai shows that this method can effectively solve the green relocation problem of FFBSSs.展开更多
In this paper, an interline power flow controller (IPFC) is used for controlling multi transmission lines. However, the optimal placement of IPFC in the transmis-sion line is a major problem. Thus, we use a combinat...In this paper, an interline power flow controller (IPFC) is used for controlling multi transmission lines. However, the optimal placement of IPFC in the transmis-sion line is a major problem. Thus, we use a combination of tabu search (TS) algorithm and artificial neural network (ANN) in the proposed method to find out the best placement locations for IPFC in a given multi transmission line system. TS algorithm is an optimization algorithm and we use it in the proposed method to determine the optimum bus combination using line data. Then, using the optimum bus combination, the neural network is trained to find out the best placement locations for IPFC. Finally, IPFC is connected at the best locations indicated by the neural network. Furthermore, using Newton-Raphson load flow algorithm, the transmission line loss of the IPFC connected bus is analyzed. The proposed methodology is implemen- ted in MATLAB working platform and tested on the IEEE-14 bus system. The output is compared with the genetic algorithm (GA) and general load flow analysis. The results are validated with Levenberg-Marquardt back propagation and gradient descent with momentum network training algorithm.展开更多
基金Project(50878082)supported by the National Natural Science Foundation of ChinaProject(2012C21058)supported by the Public Welfare Technology Application Research of Zhejiang Province,China
文摘A local improvement procedure based on tabu search(TS) was incorporated into a basic genetic algorithm(GA) and a global optimal algorithm,i.e.,hybrid genetic algorithm(HGA) approach was used to search the circular and noncircular slip surfaces associated with their minimum safety factors.The slope safety factors of circular and noncircular critical slip surfaces were calculated by the simplified Bishop method and an improved Morgenstern-Price method which can be conveniently programmed,respectively.Comparisons with other methods were made which indicate the high efficiency and accuracy of the HGA approach.The HGA approach was used to calculate one case example and the results demonstrated its applicability to practical engineering.
基金The National Natural Science Foundation of China(No.70772059)Youth Science and Technology Innovation Foundation of Nanjing Agriculture University(No.KJ06029)
文摘A new type of vehicle routing problem (VRP), multiple vehicle routing problem integrated reverse logistics (MVRPRL), is studied. In this problem, there is delivery or pickup (or both) and uncertain features in the demands of the clients. The deliveries of every client as uncertain parameters are expressed as triangular fuzzy numbers. In order to describe MVRPRL, a multi-objective fuzzy programming model with credibility measure theory is constructed. Then the simulationbased tabu search algorithm combining inter-route and intra-route neighborhoods and embedded restarts are designed to solve it. Computational results show that the tabu search algorithm developed is superior to sweep algorithms and that compared with handling each on separate routes, the transportation costs can be reduced by 43% through combining pickups with deliveries.
基金funded by the National Basic Research Program of China(the 973 Program,No.2010CB428803)the National Natural Science Foundation of China(Nos.41072175,40902069 and 40725010)
文摘In this paper, a new hybrid multi-objective evolutionary algorithm (MOEA), the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), is proposed for the management of groundwater resources under variable density conditions. Relatively few MOEAs can possess global search ability contenting with intensified search in a local area. Moreover, the overall searching ability of tabu search (TS) based MOEAs is very sensitive to the neighborhood step size. The NPTSGA is developed on the thought of integrating the genetic algorithm (GA) with a TS based MOEA, the niched Pareto tabu search (NPTS), which helps to alleviate both of the above difficulties. Here, the global search ability of the NPTS is improved by the diversification of candidate solutions arising from the evolving genetic algorithm population. Furthermore, the proposed methodology coupled with a density-dependent groundwater flow and solute transport simulator, SEAWAT, is developed and its performance is evaluated through a synthetic seawater intrusion management problem. Optimization results indicate that the NPTSGA offers a tradeoff between the two conflicting objectives. A key conclusion of this study is that the NPTSGA keeps the balance between the intensification of nondomination and the diversification of near Pareto-optimal solutions along the tradeoff curves and is a stable and robust method for implementing the multi-objective design of variable-density groundwater resources.
基金Supported by the National Natural Science Foundation of China (60975031)the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Ministry of Education of China, the Open Foundation of State Key Laboratory of Bioelectronics of Southeast University, China, and the Natural Science Foundation of Hubei Province, China (2008CDB344 and 2009CDA034)
文摘This paper describes a case study of 3D protein structure prediction of six sequences from protein data bank (PDB) by genetic algorithm and tabu search (GATS), where off-lattice AB model is considered as a simplified model of protein structure. The lowest-energy values required for forming the native conformation of proteins are searched by GATS, and then the coarse structures (i.e., simplified structure) of the proteins are obtained according to the multiple angle parameters corresponding to the lowest energies. All the coarse structures form single hydrophobic cores surrounded by hydrophilic residues, which stay on the right side of the actual characteristic of protein structure. It demonstrates that this approach can predict the 3D protein structure effectively.
基金Thailand Research Fund (Grant #MRG5480176)National Research University Project of Thailand Office of Higher Education Commission
文摘This paper considers a scheduling problem in industrial make-and-pack batch production process. This process equips with sequence-dependent changeover time, multipurpose storage units with limited capacity, storage time, batch splitting, partial equipment connectivity and transfer time. The objective is to make a production plan to satisfy all constraints while meeting demand requirement of packed products from various product families. This problem is NP-hard and the problem size is exponentially large for a realistic-sized problem. Therefore,we propose a genetic algorithm to handle this problem. Solutions to the problems are represented by chromosomes of product family sequences. These sequences are decoded to assign the resource for producing packed products according to forward assignment strategy and resource selection rules. These techniques greatly reduce unnecessary search space and improve search speed. In addition, design of experiment is carefully utilized to determine appropriate parameter settings. Ant colony optimization and Tabu search are also implemented for comparison. At the end of each heuristics, local search is applied for the packed product sequence to improve makespan. In an experimental analysis, all heuristics show the capability to solve large instances within reasonable computational time. In all problem instances, genetic algorithm averagely outperforms ant colony optimization and Tabu search with slightly longer computational time.
基金supported by the Guangdong Basic and Applied Basic Research Foundation of China(Nos.2021A1515011974 and 2023A1515011344)the Program of Science and Technology of Guangzhou,China(No.202002030238)。
文摘To solve the problems of incomplete topic description and repetitive crawling of visited hyperlinks in traditional focused crawling methods,in this paper,we propose a novel focused crawler using an improved tabu search algorithm with domain ontology and host information(FCITS_OH),where a domain ontology is constructed by formal concept analysis to describe topics at the semantic and knowledge levels.To avoid crawling visited hyperlinks and expand the search range,we present an improved tabu search(ITS)algorithm and the strategy of host information memory.In addition,a comprehensive priority evaluation method based on Web text and link structure is designed to improve the assessment of topic relevance for unvisited hyperlinks.Experimental results on both tourism and rainstorm disaster domains show that the proposed focused crawlers overmatch the traditional focused crawlers for different performance metrics.
文摘Rural power network planning is a complicated nonlinear optimized combination problem which based on load forecasting results, and its actual load is affected by many uncertain factors, which influenced optimization results of rural power network planning. To solve the problems, the interval algorithm was used to modify the initial search method of uncertainty load mathematics model in rural network planning. Meanwhile, the genetic/tabu search combination algorithm was adopted to optimize the initialized network. The sample analysis results showed that compared with the certainty planning, the improved method was suitable for urban medium-voltage distribution network planning with consideration of uncertainty load and the planning results conformed to the reality.
文摘Grid computing is the combination of com- puter resources in a loosely coupled, heterogeneous, and geographically dispersed environment. Grid data are the data used in grid computing, which consists of large-scale data-intensive applications, producing and consuming huge amounts of data, distributed across a large number of machines. Data grid computing composes sets of independent tasks each of which require massive distributed data sets that may each be replicated on different resources. To reduce the completion time of the application and improve the performance of the grid, appropriate computing resources should be selected to execute the tasks and appropriate storage resources selected to serve the files required by the tasks. So the problem can be broken into two sub-problems: selection of storage resources and assignment of tasks to computing resources. This paper proposes a scheduler, which is broken into three parts that can run in parallel and uses both parallel tabu search and a parallel genetic algorithm. Finally, the proposed algorithm is evaluated by comparing it with other related algorithms, which target minimizing makespan. Simulation results show that the proposed approach can be a good choice for scheduling large data grid applications.
基金This research is supported by Rencai Foundation of Beijing Jiaotong University (No. 2005RC035), and Research Foundation of Beijing Jiaotong University (No. 2005SM028)
文摘This paper introduces the problem of green bike relocation considering greenhouse gas emissions in free-floating bike-sharing systems(FFBSSs)and establishes a mathematical model of the problem.This model minimizes the total imbalance degree of bikes in the FFBSS and the greenhouse gas emissions generated by relocation in the FFBSS.Before the relocation phase,the FFBSS is divided into multiple relocation areas using a two-layer clustering method to reduce the scale of the relocation problem.In the relocation phase,the relocation route problem is converted into a pickup and delivery vehicle-routing problem.Then,an adaptive variable neighbourhood tabu search algorithm with a three-dimensional tabu list is proposed,which can simultaneously solve the relocation problem and the routing problem.A computational study based on the actual FFBSS used in Shanghai shows that this method can effectively solve the green relocation problem of FFBSSs.
文摘In this paper, an interline power flow controller (IPFC) is used for controlling multi transmission lines. However, the optimal placement of IPFC in the transmis-sion line is a major problem. Thus, we use a combination of tabu search (TS) algorithm and artificial neural network (ANN) in the proposed method to find out the best placement locations for IPFC in a given multi transmission line system. TS algorithm is an optimization algorithm and we use it in the proposed method to determine the optimum bus combination using line data. Then, using the optimum bus combination, the neural network is trained to find out the best placement locations for IPFC. Finally, IPFC is connected at the best locations indicated by the neural network. Furthermore, using Newton-Raphson load flow algorithm, the transmission line loss of the IPFC connected bus is analyzed. The proposed methodology is implemen- ted in MATLAB working platform and tested on the IEEE-14 bus system. The output is compared with the genetic algorithm (GA) and general load flow analysis. The results are validated with Levenberg-Marquardt back propagation and gradient descent with momentum network training algorithm.